
Workflow Task Clustering for Best Effort Systems with
Pegasus

Gurmeet Singh1, Mei-Hui Su1, Karan Vahi1, Ewa Deelman1, Bruce Berriman2, John Good2,

Daniel S. Katz3, and Gaurang Mehta1
1USC Information Sciences Institute, Marina Del Rey, CA 90292

{gurmeet, mei, vahi, deelman, gmehta}@isi.edu
2Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125

{gbb, jcg}@ipac.caltech.edu
3Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803

dsk@cct.lsu.edu

ABSTRACT
Many scientific workflows are composed of fine computational
granularity tasks, yet they are composed of thousands of them and
are data intensive in nature, thus requiring resources such as the
TeraGrid to execute efficiently. In order to improve the
performance of such applications, we often employ task clustering
techniques to increase the computational granularity of workflow
tasks. The goal is to minimize the completion time of the workflow
by reducing the impact of queue wait times. In this paper, we
examine the performance impact of the clustering techniques using
the Pegasus workflow management system. Experiments performed
using an astronomy workflow on the NCSA TeraGrid cluster show
that clustering can achieve a significant reduction in the workflow
completion time (upto 97%).

Keywords
Workflow clustering, task clustering, best effort systems, queue
wait time.

1. INTRODUCTION
Large-scale applications in different scientific fields such as
astronomy [1], biology [2], physics [3], earthquake-science [4] are
often structured as a set of interdependent tasks also known as
workflows. Due to the large resource requirements of these
applications, they are often executed using resources from various
collaborative organizations such as Open Science Grid (OSG) [5]
and national supercomputing centers such as the TeraGrid [6].
These resources are shared and autonomous and often managed
using queuing based resource management systems such as PBS [7],
Condor [8] etc. The quality of service is often best effort in nature
and the response time of the applications cannot be predicted in
advance. Additionally due to the high utilization levels of these
production resources [9], the applications experience large
slowdown due to long queue wait times at the resources.

Pegasus [10] is a framework for mapping and executing workflows
on distributed computational resources such as the TeraGrid and
OSG. Pegasus has been used for enabling the execution of various
scientific applications [1, 3, 4] on the national cyberinfrastructure.
In this paper, we discuss the optimizations incorporated in the
Pegasus system for improving the response time of workflows
using a workflow restructuring technique that clusters workflow
tasks. This technique is especially suited to fine granularity

workflows where the runtimes of the tasks in the workflows are
very small (seconds to few minutes). Yet, due to their data-
intensive nature and overall computational needs, these workflows
require resource-rich execution environments such as the TeraGrid.
One such application is Montage [11], which is used to create
custom science-grade mosaics of regions of the sky. A typical
Montage workflow contains thousands of tasks most of which have
a running time of minutes or less.

There are several problems in executing these workflows in their
original form. The typical wait time experienced by the tasks in the
resource job queue is often much more than their runtime leading to
a workflow completion time that is significantly greater than what
can be achieved on a dedicated system. These workflows have a
high degree of parallelism and a large number of tasks can execute
concurrently. When these tasks are submitted to the resource
queues, they overload critical resources such as the main
submission node. In order to cope, the resource management
systems impose limitations on the number of tasks that a user can
submit at a time thereby throttling the execution of the workflow.
Additionally, resouces such as the TeraGrid have a processing and
an accounting cost associated with the execution of each job.

The approach taken in Pegasus to deal with this issue is to group
jobs into clusters and execute a cluster as a single task. With this
approach, the number of tasks in the workflow is greatly reduced
and the queue wait time of the cluster is amortized over all the tasks
in the cluster leading to smaller completion times for the workflow.
Additionally, the load on the head node of the remote clusters and
the accounting costs are decreased due to the smaller number of
jobs being executed. Additionally, Pegasus also supports overlay
computing, where a set of nodes are temporarily acquired by the
user from the remote resource by using middleware tools such as
Condor Glidein and then the workflow is scheduled on these nodes
bypassing the remote scheduler. This has the dual affect of
incurring the queue wait time only once and reducing the
scheduling load on the main submission node of the remote
resource.

In Section 2 we describe the structure of the Montage workflow.
Section 3 describes the various clustering techniques implemented
in Pegasus and the issues associated with clustering. Section 4
describes the experimental results. Section 5 presents the case
where the entire workflow is executed as a single cluster. Related
work is presented in Section 6 followed by directions for future
work in Section 7.

scmofr
MG '08, January 29-February 3 2008, Baton Rouge, LA, USACopyright (c) 2008 ACM 978-1-59593-835-0/08/02... $5.00

2. MONTAGE WORKFLOW
Montage is an application for constructing custom astronomical
image mosaics of the sky [12, 13]. Figure 1 shows the structure of
a small Montage workflow. The vertices represent the compute
tasks and the edges represent the data dependencies between them.
The number within the vertices represents the level of the task in
the workflow. All tasks that have no parent tasks are at level one.
The level of any other task is the maximum level of any of its
parents plus one. All the tasks at the same level are independent of
each other. The Montage workflow is such that each level consists
of the same module working on different input data. For the
experiments we use three different size Montage workflows: these
workflows are used to create one, two and four square degrees
mosaics of the M17 region of the sky (the number of tasks in the
workflow increases with the number of degrees). Table 1 shows
the name of the module and number of tasks at each level of the
three montage workflows and the average runtime of each module.
The working description of each of these modules can be found at
[14].

1

22

5

1

2 2

5

1

2 2

5

1

2

5

1

2

5

1

5

3

4

6

7

Figure 1. The structure of a small Montage workflow.

Table 1. Number of task per level and average runtimes of
modules in three Montage workflows.

Level Module # tasks
(1 sq
deg)

tasks
(2 sq
deg)

tasks
(4 sq
deg)

Average
runtime

(seconds)
1 mProject 45 152 610 37
2 mDiffFit 107 410 1754 35
3 mConcat 1 1 1 15
4 mBgModel 1 1 1 10
5 mBackground 45 152 610 131
6 mImgtbl 1 4 16 10
7 mAdd 1 4 16 70
 Total 201 724 3008

3. WORKFLOW CLUSTERING IN
PEGASUS

Pegasus is a workflow management system [10, 15, 16] for
mapping and executing complex scientific workflows on the Grid.
It takes an input an abstract workflow and converts into an
executable workflow by mapping tasks to Grid resources,
transferring the task executables to those resources, discovering

sources for input data and adding data transfer nodes to the
workflow. The final executable workflow could be executed on a
local condor pool or on remote resource using Condor-G [17] and
Condor DAGMan[18]. Pegasus can also reduce workflows based
on the data already materialized in the Grid. In this paper, we focus
on the support for workflow clustering in Pegasus for minimizing
the completion time of the workflows.

Pegasus currently implements level- and label- based clustering. In
level-based clustering, tasks at the same level can be clustered
together. The user can specify either the number of clusters to be
created per level or the number of tasks to be grouped in a cluster.
Figure 2 shows the Montage workflow in Figure 1 clustered with
two clusters per level (left) and two tasks per cluster (right).

1

2 2

5

1

5

3

4

6

7

1

22 2 2

5

1

5

1

5

3

4

6

7

Figure 2. Montage workflow clustered with two clusters per
level (left) and two tasks per cluster (right).

In label-based clustering, the user can label the tasks in the
workflow to be clustered together. The tasks in the workflow with
the same label are grouped into a single cluster. Figure 3(1) shows a
workflow where tasks are labeled as cluster_1 and cluster_2 and
the resulting clustered workflow is shown in Figure 3(2). Thus any
clustering scheme can be implemented using an appropriate
labeling program.

Figure 3. Example of label based clustering.

In some cases, a user may want to use a combination of level-based
and label-based clustering techniques. Pegasus supports successive
applications of clustering techniques. For example, a workflow can
be clustered using label-based clustering and the resulting clustered
workflow can be further clustered using level-based clustering. An
example scenario is illustrated in Figure 4 where the label clustered
workflow of Figure 3(2) is further clustered by clustering tasks at
level two into a single cluster.

Figure 4. Overlaying clustering techniques.

Each cluster whether generated using level- or label- based
clustering must satisfy the convexity requirement that dictates that
all paths between any two tasks in a cluster must be completely
contained within it. The cluster shown in Figure 5 is non-convex
since the path from t1 to t3 through t4 is not contained within the
cluster. The difficulty here is that t4 must start execution after t1
has completed and before t3 starts execution. Thus it creates co-
scheduling requirements between clusters. However, due to the best
effort nature of the execution environment, it is not possible to
achieve co-scheduling without explicit resource control.

Figure 5. A non-convex cluster.

Pegasus does error checking to ensure that each cluster created by
grouping the tasks with the same label satisfies the convexity
requirement. Note that the clusters generated using level based
clustering trivially satisfy the convexity requirement since all the
tasks at a level are independent of each other and no path exists
between them. Another restriction of clustering is that the tasks
within a cluster be scheduled to the same resource.

A secondary issue after clustering has been done is to decide how to
execute the tasks in the cluster. Note that the tasks in a cluster can
represent a directed acyclic graph in case of label-based clustering.
Our current approach for this case is to create a topological ordering
of the tasks in the cluster and execute them sequentially based on
this order. This entails a loss in parallelism since the clustered tasks
can be potentially executed in parallel (e.g. level-based clusters).
However, it greatly simplifies the design of the wrapper program

used to execute the cluster and at the same time ensures that all the
dependency requirements are met.

In case of level-based clustering, we have more flexibility in how to
execute the jobs in the cluster. Since, the jobs in a level-based
cluster are always independent of each other, order is not important.
Hence, we can execute the jobs in parallel if required. In this case,
the clustered job can be executed using mpiexec, a wrapper MPI
program written in C that is distributed with Pegasus. The wrapper
when invoked on the remote resource is run on every MPI process,
with the first process being the master and the rest of the processes
acting as workers. The number of instances of mpiexec that are
invoked is equal to the number of nodes requested in the job
submission description. The master distributes the constituent jobs
to the workers.

4. EXPERIMENTS AND RESULTS
In order to evaluate the performance of the various clustering
schemes, we executed the three Montage workflows described in
Table 1 on the NCSA TeraGrid cluster using level- and label- based
clustering.

4.1 Level-based Clustering
For the level based clustering experiments described in this section,
the tasks in a cluster were executed sequentially. The requested wall
clock time of a cluster was the sum of the wall clock times of the
tasks in the cluster. The number of clusters per level of the
workflow is referred to as the clustering factor.

To illustrate the differences between the execution profile of an
unclustered and clustered workflow, Figure 6 shows the queued and
running times of the tasks in an unclustered one degree Montage
workflow (Table 1). The X-axis shows the progression of time after
the workflow was submitted for execution. The Y-axis shows the
task identifiers. For each task we plot the time when it was
submitted to the NCSA TeraGrid queue, the time when it started
running and when it finished running. As the figure shows, the tasks
in the workflow experience queue delays that are significantly more
than their running times. Figure 7 shows the execution of the same
workflow after being clustered using level-based clustering with a
clustering factor of 5. In this case, there are far fewer number of
tasks (clusters) in the workflow and they experience relatively
shorter queue delays leading to a faster completion time (both
Figure 6 and Figure 7 are on the same time-scale).

job
s i

d

0

30

60

90

120

150

180

210

elapsed time (seconds)
0 1800 3600 5400 7200 9000 1080012600

queue time
run time

Figure 6. The submit, start and finish times of tasks in one

degree workflow without clustering.

job
s i

d

0

5

10

15

20

25

30

elapsed time (seconds)
0 1800 3600 5400 7200 9000 1080012600

queue time
run time

Figure 7. The submit, start and finish time of clusters in one

degree workflow with clustering.

For the rest of the experiments in level-based clustering, we use a
clustering factor of 1, 5, and 10 on 1, 2, and 4 square degree
Montage workflows. Figure 8 shows the workflow completion
times with different clustering factors and without clustering. The
completion times are the average of three runs. The only exception
is the 4 square degree Montage workflow which we could not
execute more then once without clustering due to the significant
number of tasks in the workflow 3008). The workflow completion
times with clustering are considerably less then the unclustered
completion time of the workflows. Taking the average over the
three clustering factors, clustering reduced the workflow
completion time by 68%, 72%, and 65% for the one, two, and four
square degree Montage workflows respectively. In the best case (4
sq degree, 10 clustering factor), the reduction in time is 82%.

Average Workflow Com pletion tim e

0

5

10

15

1 2 4
degrees

ho
ur

s

1 cluster

5 cluster

10 cluster

unclustered

Figure 8. Workflow completion times with level based

clustering.

Within the various clustering factors, there is little difference except
for the 4 square degree workflow where reducing the clustering
factor seems to increase the completion time of the workflow: as
the clustering factor decreases, the requested wall clock time of
clusters increasesand hence the TeraGrid scheduler has fewer
opportunities to backfill them efficiently, or they get put into a
slower queue on the resource resulting in longer queue wait time for
these clusters.

We also plot the average slowdown of the tasks(clusters) for the
same experiment in Figure 8. The slowdown is defined as (queue
wait time + runtime)/runtime and is used to capture the impact of
the queue wait times on the tasks.

Average Slow Dow n Factor

0
5

10
15
20
25
30

1 2 4
Degrees

Sl
ow

do
w

n
fa

ct
or 1 cluster

5 cluster

10 cluster

unclustered

Figure 9. Average slowdown with level based clustering.

For the one square degree Montage workflow, the slowdown of
the unclustered workflow is significantly larger than that of the
clustered workflow. For the two and four square degree Montage
workflows, the average slowdown with clustering about the same as
that without clustering. Yet, the final completion time of the
clustered workflows is much less than that of the unclustered ones
(Figure 8), demonstrating the effectiveness of clustering tasks when
both the clustered and unclustered tasks are getting similar quality
of service from the resources. Within different clustering factors,
there is little difference except for the 4 degree workflow where the
slowdown decreases with increase in the clustering factor due to the
reasons mentioned before.

4.2 Label-based clustering
In label-based clustering, we initially cluster using level-based
clustering with clustering factors of 1,5, and 10; and then we
collapse the clusters at levels 3 and 4 into a single cluster and that at
levels 5,6, and 7 into another cluster. Thus the clustered workflows
now have fewer levels than the level-based clustering only. Due to
the resulting reduction in number of dependencies in the workflow,
we anticipated that it would complete earlier than the workflows
clustered using level-based clustering only. Figure 10 shows the
workflow completion times with label and level based clustering.
Each data point is the average of three clustering factors and three
runs of each clustering factor. There doesn’t appear to be much
difference between the two clustering techniques for 1 degree
workflow, but for the larger workflows the label-based clustering
seems to perform better than the level-based only and the difference
increases with the size of the workflow.

Average w orkflow com pletion tim es

0

1

2

3

4

5

1 2 4
degrees

ho
ur

s

Label+Level Based

Level Based Only

Figure 10. Comparison of label+level and level- based

clustering.

The experiments described in this section were done on a shared
operational execution environment (NCSA TeraGrid cluster). In
such an environment the completion time of a workflow is highly
dependent on the workload of the resources during the timeframe of
execution of the workflow. Yet, we have tried to gain high-level
insights into the performance of the various clustering techniques
by repeating experiments multiple times, eliminating the execution
records that differ widely from the rest of the records and then
taking the average. Apart from performance, there are other factors
in favor of clustering such as the reduced overhead associated with
executing tasks remotely, and the reduced load that these tasks
create on the common shared resources such as the cluster
headnode.

5. OVERLAY COMPUTING
For the experiments described in the previous sections, the tasks or
clusters were submitted to the queue of the NCSA TeraGrid cluster.
Since there were multiple levels in the workflows with several tasks
or clusters at each level, the effect of the queue wait times get
compounded. In this section, we examine a different computing
model where the user requests a certain number of processors for a
certain duration from the remote resource and then uses special
middleware tools to execute the workflow over the allocated
processors without having to go through the remote queue again.
This presents advantages for both the user and the resource owner.
For the user, he/she has to go through the resource queue only once
to get the acquired resources and thus the penalty of queue wait
time is only incurred once (provided the workflow makespan is less
than the maximum wallclock time at the resource). For resource
owners, they are no longer responsible for scheduling the individual
tasks in the workflow and hence the load on the resource scheduler
is decreased. Moreover, the user can now actually schedule the
workflow on the acquired processors in an intelligent fashion in
order to minimize the completion time of the workflow. There has
been a lot of research on scheduling task graphs on dedicated
systems[19] that is relevant here.

One way to implement this approach is to submit a placeholder job
into the resource queue. When this placeholder job starts execution,
it allows the user to schedule tasks on the processors allocated to
the placeholder by the resource scheduler using a pull- or a push-
based mechanism. In fact placeholders can be submitted to multiple
queues over multiple resources and when they start execution, they
provide resources to the user that can be scheduled at his/her
discretion. This user-level aggregation and scheduling of resources
bypassing the remote resource schedulers, creating personal clusters
[20], is also called overlay metacomputing [21].

One example of such placeholder technology is the glidein [22]
feature of Condor [23]. Users can submit glidein jobs to the remote
resources. When the glidein job starts execution, it starts worker
daemons on the processors allocated to it and these worker nodes
then report a Condor pool controlled by the user as shown in Figure
11. This Condor pool can consist of a single desktop machine
owned by the user. When the glidein job is running, this pool is
dynamically expanded to include worker nodes allocated to the
glidein job. The user can then use standard Condor tools such as
DAGMan for executing workflows on these resources. [24] reports
another system called TrellisDAG for executing workflows using
placeholders.

For the experiments in this section, we submitted Condor glidein
jobs to the NCSA TeraGrid cluster requesting 8 processors. When

the glidein job started execution, 8 worker nodes appeared in our
Condor pool and then Condor DAGMan was used to execute the
Montage workflows over these worker nodes. The duration of the
requested processors was 10 minutes for the Montage 1 square
degree workflow, 20 minutes for 2 square degrees and 30 minutes
for 4 square degrees workflow. This was based on our observation
that these workflows should not take more than this amount of time
on 8 processors to complete execution. Then we measured the
completion time of the workflow including the time spend by the
glidein job waiting in the resource queue.

Figure 11. Adding remote resources to a local Condor pool.

Figure 12 shows how the workflow completion times using Glidein
compares with the best clustering results obtained in the previous
section (the label+level clustering shown in Figure 10). The figures
shown are the average of 3 runs. The figure shows that overlay
computing can reduce the completion time of the workflow
significantly. The 4 square degree Montage workflow now
completed on average in 24 minutes as compared to 816 minutes
with the unclustered case (Figure 8), a reduction of 97%.

We can still use clustering on the top of overlay computing to
decrease the execution overhead of the workflow. This overhead is
due to the dependency management in Condor DAGMan, the time
to submit a task to the Condor queue, and the time taken by Condor
to find an execution host for the task and starting the task on that
host. For example, when Glidein was used for the experiments
shown in Figure 12, the workflow was clustered with a clustering
factor of 8. This was because there were only 8 worker nodes and
we wanted to have 8 clusters at each level that can execute in
parallel. Once the clusters were mapped to the worker nodes, the
wrapper program that implements the clusters can execute the tasks
in the cluster sequentially with minimal overhead.

Condor-G

DAGMan

Head
Node

W

W

W

W

W

Condor
Glidein

W

W

W

W

W

Local Condor Pool with remote resources

User
Computer

NCSA TG
Cluster

PBS

Average w orkflow com pletion tim e

0

0.5

1

1.5

2

2.5

1 2 4
degrees

ho
ur

s

GlideIn

Label based

Figure 12. Comparison of Glidein and the best clustering

results.

While it would seem that overlay computing is much superior to
submitting tasks to the resource queue, it is not always an available
option. For example, firewalls can prevent the worker nodes from
joining the user Condor pool. Moreover, the resource utilization
might be lower than going through the resource queue. This is due
to the fact not all the allocated processors will be working for the
entire duration for which the processors are allocated due to
changes in parallelism at various levels of the workflow. For
example, at levels 3, 4, 6, and 7 of the Montage workflow as shown
in Figure 1, the parallelism of the workflow is 1. Thus at these
levels only one task would be executing on one processor while the
rest of the processors would be idle. In comparison, when
individual tasks are submitted to the remote resource, the
processors allocated to these tasks are busy the entire time the task
is executing. In a previous work, we had looked at the problem of
selecting the proper request shape taking into consideration the
resource utilization [25].

The shape of the placeholder to request is an optimization problem
in itself. The placeholder can be thought as a malleable job. For
example, the 4 square degrees Montage workflow could be
executed using 2 processors in under 2 hours, using 4 processors in
under 1 hour, using 8 processors in under 30 minutes and so on.
However, while 2 processors might be available immediately, there
might be wait time involved in getting 8 processors. Conversely, 8
or more processors might be available immediately for the next 30
minutes but requesting a larger duration would involve wait time.
Thus we need to decide which of these to use in order to minimize
the sum of the queue wait time of the request and the execution
time of the workflow. However, this is a difficult question to
answer because the queue wait times of the requests can not be
predicted accurately in advance. There are queue prediction
services installed on the TeraGrid cluster [26] that try to predict the
queue wait time of a particular request. However, there is usually a
trade-off between the accuracy of the estimate and its
conservativeness. In the future, we plan to investigate using the
queue wait time predictions for minimizing the workflow
completion times.

Another approach for selecting the placeholder shape is to examine
the current resource availability of the cluster. The NCSA TeraGrid
cluster allows users to examine the currently available resources
using the showbf (show backfill window) command [27]. The
output of a showbf command is shown in Figure 13. It shows that 8
processors (called Tasks) are available for 38 minutes while 6 or

less processors are available for little more than one hour. Thus in
this situation requesting 8 processors for 30 minutes would not
involve any queue wait time and the request would be able to start
immediately. However, this is only a guideline and the resource
scheduler might enforce additional constraints such as limiting the
total number of jobs concurrently running for a particular user, etc.

Figure 13. Output of showbf command.

Executing a workflow using a placeholder as explained here is
logically equivalent to clustering the whole workflow into a single
cluster. This is because we are submitting a single task (glidein) to
the remote resource queue and this task is used to execute the entire
workflow. Since we are executing a workflow instead of a set of
independent tasks, we have to use Condor DAGMan instead of the
simple wrapper program that we had been using earlier. Thus we
have covered both the extreme ends of the spectrum. At one end,
the workflow is unclustered and each task can be thought to be a
single cluster. At another end, the entire workflow is a single cluster.
In between there are various possibilities as explored by the various
label and level based clustering techniques as discussed in the
previous section.

6. RELATED WORK
There has been a lot of work done on clustering task graphs on
multiprocessing systems in order to minimize completion time [28].
The tradeoff there is between the concurrency and communication.
When tasks that can execute in parallel are clustered, they are
constrained to execute serially on the same processor. Thus there is
a loss of concurrency. However, the communication cost between
the clustered tasks is zero. There are marked differences between
this clustering and our clustering. In our implementation, the
clusters need to be convex and the tradeoff is between concurrency
and queue wait times. Clustering does not affects the
communication costs since the tasks (clustered or otherwise)
communicate using files and thus via NFS. Even the loss of
concurrency due to serial execution in our case can be overcome by
executing each cluster using multiple processors (mpiexec) in order
to exploit the parallelism between the clustered tasks. However, in
the general case each cluster would require a dependency manager
to execute the tasks in the cluster.

Overlay metacomputing [20, 21] has been recogonized as a means
of creating a user level aggregation of resources from multiple
providers. [24] describes a system for scheduling and executing
DAGs on such overlays. However, the functionality provided is
similar to that of Condor glidein and DAGMan that were used by us
for our experiments. [20] describes another system called
MyCluster, currently installed on the TeraGrid system that creates a
user level personal cluster by submitting glidein jobs to the
underlying resource queues.

The request selection problem in order to minimize the completion
time for moldable jobs have been studied earlier in parallel
computing [29-31]. [31] introduces an application scheduler that
chooses on the behalf of the user, which request to submit for a
particular job. It also uses a simulation in order to determine the

best request. But the simulation is done by the user instead of the
scheduler. Their work is mainly focused on the selection between
the various possible requests. In [25] we extend this work to
workflows and cast a workflow as a moldable job. In [25] we
consider the resource utilization of the resulting schedule as an
explicit metric to be optimized. When the user-level overlay can be
formed from multiple resource requests instead of a single one, [32]
describes a system for intelligent selection of resources constituting
such overlays in order to minimize the allocation cost and the
completion time of the workflows. In this paper, we go beyond
simulations and use a real world application over an operational
Grid infrastructure in order to showcase the benefits of clustering
for workflows.

Another related aspect is efficient scheduling and execution of the
workflows tasks over the allocated resources when using overlay
computing. Due to the distributed nature of the resources, the large
number of tasks in the workflow and the dependencies between the
tasks, there can be a non-negligible overhead involved in executing
the workflow over the acquired resources [33, 34]. In [33], we have
done a detailed analysis of the execution overhead when using the
Condor system. We have used the insights gathered from that study
for efficient execution of the Montage workflows as described in
this paper.

7. CONCLUSION AND FUTURE WORK
We have shown that task clustering and overlay computing
techniques can be very beneficial when scheduling large-scale fine-
computational-granularity workflows onto the national
cyberinfrastructure resources. We presented different clustering
techniques incorporated into the Pegasus workflow mapping system
and shown the results of scheduling and running an astronomy
application on the TeraGrid. For this application, we were able to
reduce the overall workflow runtime by 97%. We can expect to see
reduced benefits of clustering when workflows are composed of
longer duration tasks.

In the past year, a lot of work has been done in predicting queue
wait times based on statistical models for the TeraGrid sites [35].
We plan to interface Pegasus with these queue prediction services,
in order to automatically determine the clustering granularity for
level-based clustering. As our experiments indicate, clustering is
good for running short duration jobs. It is important that the
clustered job does not become too large with a long requested wall
clock time that results in the job waiting in the queue for a long
period. Interfacing with queue prediction services will allow us to
optimize the clustering so that the queue wait time is minimized.

Currently, in the case of label-based clustering we can only execute
jobs sequentially. However, this is inefficient for large clusters as
the loss in parallelism might offset any gain in performance due to
clustering. We propose to investigate the possibility of using a
dependency manager such as Condor DAGMan [18] in order to
execute tasks within a cluster on multiple nodes.

ACKNOWLEDGEMENTS
This work was supported by NSF under OCI- 0722019. We thank
TeraGrid for the use of their resources.

REFERENCES
[1] D. S. Katz, N. Anagnostou, G. B. Berriman, E. Deelman,

J. C. Good, J. C. Jacob, C. Kesselman, A. C. Laity, T. A.

Prince, G. Singh, M. Su, and R. Williams, "Astronomical
Image Mosaicking on a Grid: Initial Experiences," in
Engineering the Grid: Status and Perspective, B. D.
Martino, J. Dongarra, A. Hoisie, L. T. Yang, and H. Zima,
Eds.: American Scientific Publishers, 2006.

[2] A. Lathers, M.-H. Su, A. Kulungowski, A. W. Lin, G.
Mehta, S. T. Peltier, E. Deelman, and M. H. Ellisman,
"Enabling parallel scientific applications with workflow
tools," presented at Challenges of Large Applications in
Distributed Environments, 2006 IEEE, 2006.

[3] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman,
"Workflow Management in GriPhyN," in Grid Resource
Management: State of the Art and Future Trends, J.
Nabrzyski, J. M. Schopf, and J. Weglarz, Eds.: Springer,
2003.

[4] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R.
Graves, N. Gupta, V. Gupta, T. H. Jordan, C. Kesselman,
P. Maechling, J. Mehringer, G. Mehta, D. Okaya, K. Vahi,
and L. Zhao, "Managing Large-Scale Workflow
Execution from Resource Provisioning to Provenance
Tracking: The CyberShake Example," presented at
Second IEEE International Conference on e-Science and
Grid Computing, 2006.

[5] "The Open Science Grid Consortium,"
http://www.opensciencegrid.org.

[6] C. Catlett, "The philosophy of TeraGrid: building an open,
extensible, distributed TeraScale facility," presented at
Cluster Computing and the Grid 2nd IEEE/ACM
International Symposium CCGRID2002, 2002.

[7] R. L. Henderson, "Job Scheduling Under the Portable
Batch System " in Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing Springer-
Verlag, 1995 pp. 279-294

[8] M. J. Litzkow, M. Livny, and M. W. Mutka, "Condor-a
hunter of idle workstations," presented at Distributed
Computing Systems, 1988., 8th International Conference
on, 1988.

[9] A. Iosup, C. Dumitrescu, D. Epema, H. Li, and L.
Wolters, "How are Real Grids Used? The Analysis of
Four Grid Traces and its Implications," presented at 7th
IEEE/ACM International Conference on Grid Computing,
Barcelona, Spain, 2006.

[10] E. Deelman, G. Mehta, G. Singh, M.-H. Su, and K. Vahi,
"Pegasus: Mapping Large-Scale Workflows to
Distributed Resources," in Workflows for e-Science:
Scientific Workflows for Grids, I. Taylor, E. Deelman, D.
B. Gannon, and M. Shields, Eds.: Springer, 2007.

[11] "Montage Project." http://montage.ipac.caltech.edu.

[12] G. B. Berriman, E. Deelman, J. Good, J. Jacob, D. S.
Katz, C. Kesselman, A. Laity, T. A. Prince, G. Singh, and
M.-H. Su, "Montage: A Grid Enabled Engine for
Delivering Custom Science-Grade Mosaics On Demand,"
presented at SPIE Conference 5487: Astronomical
Telescopes, 2004.

[13] "Montage," in http://montage.ipac.caltech.edu.

[14] "Montage Components."
http://montage.ipac.caltech.edu/docs/components.html.

[15] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.
Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good,
A. Laity, J. C. Jacob, and D. S. Katz, "Pegasus: A
framework for mapping complex scientific workflows
onto distributed systems," Scientific Programming, vol.
13, pp. 219-237, 2005.

[16] Pegasus, "http://pegasus.isi.edu."

[17] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S.
Tuecke, "Condor-G: a computation management agent
for multi-institutional grids," presented at High
Performance Distributed Computing, 2001. Proceedings.
10th IEEE International Symposium on, 2001.

[18] "Condor DAGMan."
http://www.cs.wisc.edu/condor/dagman.

[19] H. Topcuouglu, S. Hariri, and M.-y. Wu, "Performance-
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing," IEEE Transactions on
Parallel and Distributed Systems, vol. 13(3), pp. 260-274,
2002.

[20] E. Walker, J. P. Gardner, V. Litvin, and E. L. Turner,
"Creating Personal Adaptive Clusters for Managing
Scientific Jobs in a Distributed Computing Environment,"
presented at Workshop on Challenges of Large
Applications in Distributed Environments (CLADE),
2006.

[21] C. Pinchak, P. Lu, and M. Goldenberg, "Practical
Heterogeneous Placeholder Scheduling in Overlay
Metacomputers: Early Experiences," in Job Scheduling
Strategies for Parallel Processing, D. G. F. a. L. R. a. U.
Schwiegelshohn, Ed.: Springer Verlag, 2002, pp. 205--
228.

[22] Condor_Glidein,
"http://www.cs.wisc.edu/condor/glidein."

[23] D. Thain, T. Tannenbaum, and M. Livny, "Distributed
Computing in Practice: The Condor Experience,"
Concurrency and Computation: Practice and Experience,
vol. 17, pp. 323-356, 2005.

[24] M. Goldenberg, P. Lu, and J. Schaeffer, "TrellisDAG: A
System for Structured DAG Scheduling," in Job
Scheduling Strategies for Parallel Processing, D. G. F. a.
L. R. a. U. Schwiegelshohn, Ed.: Springer Verlag, 2003,
pp. 21--43.

[25] G. Singh, C. Kesselman, and E. Deelman, "Performance
Impact of Resource Provisioning on Workflows,"

University of Southern California available at
http://www.cs.usc.edu/Research/TechReports/05-850.pdf
05-850, 2005.

[26] D. Nurmi, R. Wolski, J. Brevik, and G. Obertelli,
"QBETS: Batch Queue Prediction System," presented at
TeraGrid Conference, Madison, 2007, available at
http://www.teragrid.org/events/teragrid07/archive/present
ations/wednesday/QBETS.pdf.

[27] ShowBF, "Maui User Manual, available at
http://www.clusterresources.com/products/maui/docs/co
mmands/showbf.shtml."

[28] Y.-K. Kwok and I. Ahmad, "Static scheduling algorithms
for allocating directed task graphs to multiprocessors,"
ACM Computing Survey, vol. 31, pp. 406-471, 1999.

[29] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C.
Sevcik, and P. Wong, "Theory and Practice in Parallel
Job Scheduling " in Proceedings of the Job Scheduling
Strategies for Parallel Processing Springer-Verlag, 1997
pp. 1-34

[30] A. B. Downey, "Using Queue Time Predictions for
Processor Allocation " in Proceedings of the Job
Scheduling Strategies for Parallel Processing Springer-
Verlag, 1997 pp. 35-57

[31] W. Cirne and F. Berman, "Using Moldability to Improve
the Performance of Supercomputer Jobs," Journal of
Parallel and Distributed Computing, vol. 62, pp. 1571-
1601, 2002.

[32] G. Singh, C. Kesselman, and E. Deelman, "A
Provisioning Model and its Comparison with Best-Effort
for Performance-Cost Optimization in Grids," in
Proceedings of the 16th International Symposium on
High Performance Distributed Computing (HPDC).
Monterey, California, USA: ACM Press, 2007, pp. 117-
126.

[33] G. Singh, C. Kesselman, and E. Deelman, "Optimizing
Grid-Based Workflow Execution," Journal of Grid
Computing, vol. 3(3-4), pp. 201-219, 2005.

[34] F. Nerieri, R. Prodan, T. Fahringer, and H.-L. Truong,
"Overhead Analysis of Grid Workflow Applications,"
presented at 7th IEEE/ACM International Conference on
Grid Computing, 2006.

[35] J. Brevik, D. Nurmi, and R. Wolski, "Predicting Bounds
on Queueing Delay in Space-Shared Computing
Environments," presented at IEEE International
Symposium on Workload Characterization, 2006.

