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ABSTRACT 
Many scientific workflows are composed of fine computational 
granularity tasks, yet they are composed of thousands of them and 
are data intensive in nature, thus requiring resources such as the 
TeraGrid to execute efficiently. In order to improve the 
performance of such applications, we often employ task clustering 
techniques to increase the computational granularity of workflow 
tasks. The goal is to minimize the completion time of the workflow 
by reducing the impact of queue wait times. In this paper, we 
examine the performance impact of the clustering techniques using 
the Pegasus workflow management system. Experiments performed 
using an astronomy workflow on the NCSA TeraGrid cluster show 
that clustering can achieve a significant reduction in the workflow 
completion time (upto 97%). 

Keywords 
Workflow clustering, task clustering, best effort systems, queue 
wait time. 

1. INTRODUCTION 
Large-scale applications in different scientific fields such as 
astronomy [1], biology [2], physics [3], earthquake-science [4] are 
often structured as a set of  interdependent tasks also known as 
workflows. Due to the large resource requirements of these 
applications, they are often executed using resources from various 
collaborative organizations such as Open Science Grid (OSG) [5] 
and national supercomputing centers such as the TeraGrid [6]. 
These resources are shared and autonomous and often managed 
using queuing based resource management systems such as PBS [7], 
Condor [8] etc. The quality of service is often best effort in nature 
and the response time of the applications cannot be predicted in 
advance. Additionally due to the high utilization levels of these 
production resources [9], the applications  experience large 
slowdown due to long queue wait times at the resources. 

Pegasus [10] is a framework for mapping and executing workflows 
on distributed computational resources such as the TeraGrid and 
OSG. Pegasus has been used for enabling the execution of various 
scientific applications [1, 3, 4] on the national cyberinfrastructure. 
In this paper, we discuss the optimizations incorporated in the 
Pegasus system for improving the response time of workflows 
using a workflow restructuring technique that clusters workflow 
tasks. This technique is especially suited to fine granularity 

workflows where the runtimes of the tasks in the workflows are 
very small (seconds to few minutes). Yet, due to their data-
intensive nature and overall computational needs, these workflows 
require resource-rich execution environments such as the TeraGrid. 
One such application is Montage [11], which is used to create 
custom science-grade mosaics of regions of the sky. A typical 
Montage workflow contains thousands of tasks most of which have 
a running time of minutes or less.  

There are several problems in executing these workflows in their 
original form. The typical wait time experienced by the tasks in the 
resource job queue is often much more than their runtime leading to 
a workflow completion time that is significantly greater than what 
can be achieved on a dedicated system. These workflows have a 
high degree of parallelism and a large number of tasks can execute 
concurrently. When these tasks are submitted to the resource 
queues, they overload critical resources such as the main 
submission node. In order to cope, the resource management 
systems impose limitations on the number of tasks that a user can 
submit at a time thereby throttling the execution of the workflow.  
Additionally, resouces such as the TeraGrid have a processing and 
an accounting cost associated with the execution of each job.   

The approach taken in Pegasus to deal with this issue is to group 
jobs into clusters and execute a cluster as a single task. With this 
approach, the number of tasks in the workflow is greatly reduced 
and the queue wait time of the cluster is amortized over all the tasks 
in the cluster leading to smaller completion times for the workflow.  
Additionally, the load on the head node of the remote clusters and 
the accounting costs are decreased due to the smaller number of 
jobs being executed. Additionally, Pegasus also supports overlay 
computing, where a set of nodes are temporarily acquired by the 
user from the remote resource by using middleware tools such as 
Condor Glidein and then the workflow is scheduled on these nodes 
bypassing the remote scheduler. This has the dual affect of 
incurring the queue wait time only once and reducing the 
scheduling load on the main submission node of the remote 
resource.  

In Section 2 we describe the structure of the Montage workflow. 
Section 3 describes the various clustering techniques implemented 
in Pegasus and the issues associated with clustering. Section 4 
describes the experimental results. Section 5 presents the case 
where the entire workflow is executed as a single cluster. Related 
work is presented in Section 6 followed by directions for future 
work in Section 7. 
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2. MONTAGE WORKFLOW 
Montage is an application for constructing custom astronomical 
image mosaics of the sky [12, 13]. Figure 1 shows the structure of 
a small Montage workflow. The vertices represent the compute 
tasks and the edges represent the data dependencies between them. 
The number within the vertices represents the level of the task in 
the workflow. All tasks that have no parent tasks are at level one. 
The level of any other task is the maximum level of any of its 
parents plus one. All the tasks at the same level are independent of 
each other. The Montage workflow is such that each level consists 
of the same module working on different input data. For the 
experiments we use three different size Montage workflows: these 
workflows are used to create one, two and four square degrees 
mosaics of the M17 region of the sky (the number of tasks in the 
workflow increases with the number of degrees).  Table 1 shows 
the name of the module and number of tasks at each level of the 
three montage workflows and the average runtime of each module. 
The working description of each of these modules can be found at 
[14]. 
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Figure 1. The structure of a small Montage workflow. 

Table 1. Number of task per level and average runtimes of 
modules in three Montage workflows. 

Level Module # tasks 
(1 sq 
deg) 

# tasks 
(2 sq 
deg) 

# tasks 
(4 sq 
deg) 

Average 
runtime 

(seconds) 
1 mProject 45 152 610 37 
2  mDiffFit 107 410 1754 35 
3  mConcat 1 1 1 15 
4 mBgModel 1 1 1 10 
5 mBackground 45 152 610 131 
6 mImgtbl 1 4 16 10 
7 mAdd 1 4 16 70 
 Total 201 724 3008  

3. WORKFLOW CLUSTERING IN 
PEGASUS 

Pegasus is a workflow management system [10, 15, 16] for 
mapping and executing complex scientific workflows on the Grid. 
It takes an input an abstract workflow and converts into an 
executable workflow by mapping tasks to Grid resources, 
transferring the task executables to those resources, discovering 

sources for input data and adding data transfer nodes to the 
workflow. The final executable workflow could be executed on a 
local condor pool or on remote resource using Condor-G [17] and 
Condor DAGMan[18]. Pegasus can also reduce workflows based 
on the data already materialized in the Grid. In this paper, we focus 
on the support for workflow clustering in Pegasus for minimizing 
the completion time of the workflows.  

Pegasus currently implements level- and label- based clustering. In 
level-based clustering, tasks at the same level can be clustered 
together. The user can specify either the number of clusters to be 
created per level or the number of tasks to be grouped in a cluster. 
Figure 2 shows the Montage workflow in Figure 1 clustered with 
two clusters per level (left) and two tasks per cluster (right).  
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Figure 2. Montage workflow clustered with two clusters per 
level (left) and two tasks per cluster (right). 

In label-based clustering, the user can label the tasks in the 
workflow to be clustered together. The tasks in the workflow with 
the same label are grouped into a single cluster. Figure 3(1) shows a 
workflow where tasks are labeled as cluster_1 and cluster_2 and 
the resulting clustered workflow is shown in Figure 3(2). Thus any 
clustering scheme can be implemented using an appropriate 
labeling program. 

 
Figure 3. Example of label based clustering. 



In some cases, a user may want to use a combination of level-based 
and label-based clustering techniques. Pegasus supports successive 
applications of clustering techniques. For example, a workflow can 
be clustered using label-based clustering and the resulting clustered 
workflow can be further clustered using level-based clustering. An 
example scenario is illustrated in Figure 4 where the label clustered 
workflow of Figure 3(2) is further clustered by clustering tasks at 
level two into a single cluster. 

 
Figure 4. Overlaying clustering techniques. 

Each cluster whether generated using level- or label- based 
clustering must satisfy the convexity requirement that dictates that 
all paths between any two tasks in a cluster must be completely 
contained within it. The cluster shown in Figure 5 is non-convex 
since the path from t1 to t3 through t4 is not contained within the 
cluster. The difficulty here is that t4 must start execution after t1 
has completed and before t3 starts execution. Thus it creates co-
scheduling requirements between clusters. However, due to the best 
effort nature of the execution environment, it is not possible to 
achieve co-scheduling without explicit resource control.  

 
Figure 5. A non-convex cluster. 

Pegasus does error checking to ensure that each cluster created by 
grouping the tasks with the same label satisfies the convexity 
requirement. Note that the clusters generated using level based 
clustering trivially satisfy the convexity requirement since all the 
tasks at a level are independent of each other and no path exists 
between them. Another restriction of clustering is that the tasks 
within a cluster be scheduled to the same resource. 

A secondary issue after clustering has been done is to decide how to 
execute the tasks in the cluster. Note that the tasks in a cluster can 
represent a directed acyclic graph in case of label-based clustering. 
Our current approach for this case is to create a topological ordering 
of the tasks in the cluster and execute them sequentially based on 
this order. This entails a loss in parallelism since the clustered tasks 
can be potentially executed in parallel (e.g. level-based clusters). 
However, it greatly simplifies the design of the wrapper program 

used to execute the cluster and at the same time ensures that all the 
dependency requirements are met.   

In case of level-based clustering, we have more flexibility in how to 
execute the jobs in the cluster. Since, the jobs in a level-based 
cluster are always independent of each other, order is not important. 
Hence, we can execute the jobs in parallel if required. In this case, 
the clustered job can be executed using mpiexec, a wrapper MPI 
program written in C that is distributed with Pegasus. The wrapper 
when invoked on the remote resource is run on every MPI process, 
with the first process being the master and the rest of the processes 
acting as workers. The number of instances of mpiexec that are 
invoked is equal to the number of nodes requested in the job 
submission description. The master distributes the constituent jobs 
to the workers.  

4. EXPERIMENTS AND RESULTS 
In order to evaluate the performance of the various clustering 
schemes, we executed the three Montage workflows described in 
Table 1 on the NCSA TeraGrid cluster using level- and label- based 
clustering.  

4.1 Level-based Clustering 
For the level based clustering experiments described in this section, 
the tasks in a cluster were executed sequentially. The requested wall 
clock time of a cluster was the sum of the wall clock times of the 
tasks in the cluster. The number of clusters per level of the 
workflow is referred to as the clustering factor. 

To illustrate the differences between the execution profile of an 
unclustered and clustered workflow, Figure 6 shows the queued and 
running times of the tasks in an unclustered one degree Montage 
workflow (Table 1). The X-axis shows the progression of time after 
the workflow was submitted for execution. The Y-axis shows the 
task identifiers. For each task we plot the time when it was 
submitted to the NCSA TeraGrid queue, the time when it started 
running and when it finished running. As the figure shows, the tasks 
in the workflow experience queue delays that are significantly more 
than their running times. Figure 7 shows the execution of the same 
workflow after being clustered using level-based clustering with a 
clustering factor of 5. In this case, there are far fewer number of 
tasks (clusters) in the workflow and they experience relatively 
shorter queue delays leading to a faster completion time (both 
Figure 6 and Figure 7 are on the same time-scale). 
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Figure 6. The submit, start and finish times of tasks in one 

degree workflow without clustering. 
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Figure 7. The submit, start and finish time of clusters in one 

degree workflow with clustering. 

For the rest of the experiments in level-based clustering, we use a 
clustering factor of 1, 5, and 10 on 1, 2, and 4 square degree 
Montage workflows. Figure 8 shows the workflow completion 
times with different clustering factors and without clustering. The 
completion times are the average of three runs. The only exception 
is the 4 square degree Montage workflow which we could not 
execute more then once without clustering due to the significant 
number of tasks in the workflow 3008). The workflow completion 
times with clustering are considerably less then the unclustered 
completion time of the workflows. Taking the average over the 
three clustering factors, clustering reduced the workflow 
completion time by 68%, 72%, and 65% for the one, two, and four 
square degree Montage workflows respectively. In the best case (4 
sq degree, 10 clustering factor), the reduction in time is 82%.   

Average  Workflow  Com pletion tim e

0

5

10

15

1 2 4
degrees

ho
ur

s

1 cluster

5 cluster

10 cluster

unclustered

 
Figure 8. Workflow completion times with level based 

clustering. 

Within the various clustering factors, there is little difference except 
for the 4 square degree workflow where reducing the clustering 
factor seems to increase the completion time of the workflow: as 
the clustering factor decreases, the requested wall clock time of 
clusters increasesand hence the TeraGrid scheduler has fewer 
opportunities to backfill them efficiently, or they get put into a 
slower queue on the resource resulting in longer queue wait time for 
these clusters. 

We also plot the average slowdown of the tasks(clusters) for the 
same experiment in Figure 8. The slowdown is defined as (queue 
wait time + runtime)/runtime and is used to capture the impact of 
the queue wait times on the tasks.  
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Figure 9. Average slowdown with level based clustering. 

For the one square degree Montage workflow, the slowdown of 
the unclustered workflow is significantly larger than that of the 
clustered workflow. For the two and four square degree Montage 
workflows, the average slowdown with clustering about the same as 
that without clustering. Yet, the final completion time of the 
clustered workflows is much less than that of the unclustered ones 
(Figure 8), demonstrating the effectiveness of clustering tasks when 
both the clustered and unclustered tasks are getting similar quality 
of service from the resources. Within different clustering factors, 
there is little difference except for the 4 degree workflow where the 
slowdown decreases with increase in the clustering factor due to the 
reasons mentioned before.  

4.2 Label-based clustering 
In label-based clustering, we initially cluster using level-based 
clustering with clustering factors of 1,5, and 10; and then we 
collapse the clusters at levels 3 and 4 into a single cluster and that at 
levels 5,6, and 7 into another cluster. Thus the clustered workflows 
now have fewer levels than the level-based clustering only. Due to 
the resulting reduction in number of dependencies in the workflow, 
we anticipated that it would complete earlier than the workflows 
clustered using level-based clustering only. Figure 10 shows the 
workflow completion times with label and level based clustering. 
Each data point is the average of three clustering factors and three 
runs of each clustering factor. There doesn’t appear to be much 
difference between the two clustering techniques for 1 degree 
workflow, but for the larger workflows the label-based clustering 
seems to perform better than the level-based only and the difference 
increases with the size of the workflow.  
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Figure 10. Comparison of label+level and level- based 

clustering. 



The experiments described in this section were done on a shared 
operational execution environment (NCSA TeraGrid cluster). In 
such an environment the completion time of a workflow is highly 
dependent on the workload of the resources during the timeframe of 
execution of the workflow. Yet, we have tried to gain high-level 
insights into the performance of the various clustering techniques 
by repeating experiments multiple times, eliminating the execution 
records that differ widely from the rest of the records and then 
taking the average. Apart from performance, there are other factors 
in favor of clustering such as the reduced overhead associated with 
executing tasks remotely, and the reduced load that these tasks 
create on the common shared resources such as the cluster 
headnode. 

5. OVERLAY COMPUTING 
For the experiments described in the previous sections, the tasks or 
clusters were submitted to the queue of the NCSA TeraGrid cluster. 
Since there were multiple levels in the workflows with several tasks 
or clusters at each level, the effect of the queue wait times get 
compounded. In this section, we examine a different computing 
model where the user requests a certain number of processors for a 
certain duration from the remote resource and then uses special 
middleware tools to execute the workflow over the allocated 
processors without having to go through the remote queue again. 
This presents advantages for both the user and the resource owner. 
For the user, he/she has to go through the resource queue only once 
to get the acquired resources and thus the penalty of queue wait 
time is only incurred once (provided the workflow makespan is less 
than the maximum wallclock time at the resource). For resource 
owners, they are no longer responsible for scheduling the individual 
tasks in the workflow and hence the load on the resource scheduler 
is decreased. Moreover, the user can now actually schedule the 
workflow on the acquired processors in an intelligent fashion in 
order to minimize the completion time of the workflow. There has 
been a lot of research on scheduling task graphs on dedicated 
systems[19] that is relevant here. 

One way to implement this approach is to submit a placeholder job 
into the resource queue. When this placeholder job starts execution, 
it allows the user to schedule tasks on the processors allocated to 
the placeholder by the resource scheduler using a pull- or a push- 
based mechanism. In fact placeholders can be submitted to multiple 
queues over multiple resources and when they start execution, they 
provide resources to the user that can be scheduled at his/her 
discretion.  This user-level aggregation and scheduling of resources 
bypassing the remote resource schedulers, creating personal clusters 
[20], is also called overlay metacomputing [21]. 

One example of such placeholder technology is the glidein [22] 
feature of Condor [23]. Users can submit glidein jobs to the remote 
resources. When the glidein job starts execution, it starts worker 
daemons on the processors allocated to it and these worker nodes 
then report a Condor pool controlled by the user as shown in Figure 
11. This Condor pool can consist of a single desktop machine 
owned by the user. When the glidein job is running, this pool is 
dynamically expanded to include worker nodes allocated to the 
glidein job. The user can then use standard Condor tools such as 
DAGMan for executing  workflows on these resources. [24] reports 
another system called TrellisDAG for executing workflows using 
placeholders.   

For the experiments in this section, we submitted Condor glidein 
jobs to the NCSA TeraGrid cluster requesting 8 processors. When 

the glidein job started execution, 8 worker nodes appeared in our 
Condor pool and then Condor DAGMan was used to execute the 
Montage workflows over these worker nodes. The duration of the 
requested processors was 10 minutes for the Montage 1 square 
degree workflow, 20 minutes for 2 square degrees and 30 minutes 
for 4 square degrees workflow. This was based on our observation 
that these workflows should not take more than this amount of time 
on 8 processors to complete execution. Then we measured the 
completion time of the workflow including the time spend by the 
glidein job waiting in the resource queue.  

 
Figure 11. Adding remote resources to a local Condor pool. 

Figure 12 shows how the workflow completion times using Glidein 
compares with the best clustering results obtained in the previous 
section (the label+level clustering shown in Figure 10). The figures 
shown are the average of 3 runs. The figure shows that overlay 
computing can reduce the completion time of the workflow 
significantly. The 4 square degree Montage workflow now 
completed on average in 24 minutes as compared to 816 minutes 
with the unclustered case (Figure 8), a reduction of 97%. 

We can still use clustering on the top of overlay computing to 
decrease the execution overhead of the workflow. This overhead is 
due to the dependency management in Condor DAGMan, the time 
to submit a task to the Condor queue, and the time taken by Condor 
to find an execution host for the task and starting the task on that 
host. For example, when Glidein was used for the experiments 
shown in Figure 12, the workflow was clustered with a clustering 
factor of 8. This was because there were only 8 worker nodes and 
we wanted to have 8 clusters at each level that can execute in 
parallel. Once the clusters were mapped to the worker nodes, the 
wrapper program that implements the clusters can execute the tasks 
in the cluster sequentially with minimal overhead.  
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Figure 12. Comparison of Glidein and the best clustering 

results. 

While it would seem that overlay computing is much superior to 
submitting tasks to the resource queue, it is not always an available 
option. For example, firewalls can prevent the worker nodes from 
joining the user Condor pool. Moreover, the resource utilization 
might be lower than going through the resource queue. This is due 
to the fact not all the allocated processors will be working for the 
entire duration for which the processors are allocated due to 
changes in parallelism at various levels of the workflow. For 
example, at levels 3, 4, 6, and 7 of the Montage workflow as shown 
in Figure 1, the parallelism of the workflow is 1. Thus at these 
levels only one task would be executing on one processor while the 
rest of the processors would be idle. In comparison, when 
individual tasks are submitted to the remote resource, the 
processors allocated to these tasks are busy the entire time the task 
is executing. In a previous work, we had looked at the problem of 
selecting the proper request shape taking into consideration the 
resource utilization [25].   

The shape of the placeholder to request is an optimization problem 
in itself. The placeholder can be thought as a malleable job. For 
example, the 4 square degrees Montage workflow could be 
executed using 2 processors in under 2 hours, using 4 processors in 
under 1 hour, using 8 processors in under 30 minutes and so on. 
However, while 2 processors might be available immediately, there 
might be wait time involved in getting 8 processors. Conversely, 8 
or more processors might be available immediately for the next 30 
minutes but requesting a larger duration would involve wait time. 
Thus we need to decide which of these to use in order to minimize 
the sum of the queue wait time of the request and the execution 
time of the workflow. However, this is a difficult question to 
answer because the queue wait times of the requests can not be 
predicted accurately in advance. There are queue prediction 
services installed on the TeraGrid cluster [26] that try to predict the 
queue wait time of a particular request. However, there is usually a 
trade-off between the accuracy of the estimate and its 
conservativeness. In the future, we plan to investigate using the 
queue wait time predictions for minimizing the workflow 
completion times.  

Another approach for selecting the placeholder shape is to examine 
the current resource availability of the cluster. The NCSA TeraGrid 
cluster allows users to examine the currently available resources 
using the showbf (show backfill window) command [27]. The 
output of a showbf command is shown in Figure 13. It shows that 8 
processors (called Tasks) are available for 38 minutes while 6 or 

less processors are available for little more than one hour. Thus in 
this situation requesting 8 processors for 30 minutes would not 
involve any queue wait time and the request would be able to start 
immediately. However, this is only a guideline and the resource 
scheduler might enforce additional constraints such as limiting the 
total number of jobs concurrently running for a particular user, etc. 

 
Figure 13. Output of showbf command. 

Executing a workflow using a placeholder as explained here is 
logically equivalent to clustering the whole workflow into a single 
cluster. This is because we are submitting a single task (glidein) to 
the remote resource queue and this task is used to execute the entire 
workflow. Since we are executing a workflow instead of a set of 
independent tasks, we have to use Condor DAGMan instead of the 
simple wrapper program that we had been using earlier. Thus we 
have covered both the extreme ends of the spectrum. At one end, 
the workflow is unclustered and each task can be thought to be a 
single cluster. At another end, the entire workflow is a single cluster. 
In between there are various possibilities as explored by the various 
label and level based clustering techniques as discussed in the 
previous section.   

6. RELATED WORK 
There has been a lot of work done on clustering task graphs on 
multiprocessing systems in order to minimize completion time [28]. 
The tradeoff there is between the concurrency and communication. 
When tasks that can execute in parallel are clustered, they are 
constrained to execute serially on the same processor. Thus there is 
a loss of concurrency. However, the communication cost between 
the clustered tasks is zero. There are marked differences between 
this clustering and our clustering. In our implementation, the 
clusters need to be convex and the tradeoff is between concurrency 
and queue wait times. Clustering does not affects the 
communication costs since the tasks (clustered or otherwise) 
communicate using files and thus via NFS. Even the loss of 
concurrency due to serial execution in our case can be overcome by 
executing each cluster using multiple processors (mpiexec) in order 
to exploit the parallelism between the clustered tasks. However, in 
the general case each cluster would require a dependency manager 
to execute the tasks in the cluster. 

Overlay metacomputing [20, 21] has been recogonized as a means 
of creating a user level aggregation of resources from multiple 
providers. [24] describes a system for scheduling and executing 
DAGs on such overlays. However, the functionality provided is 
similar to that of Condor glidein and DAGMan that were used by us 
for our experiments. [20] describes another system called 
MyCluster, currently installed on the TeraGrid system that creates a 
user level personal cluster by submitting glidein jobs to the 
underlying resource queues. 

The request selection problem in order to minimize the completion 
time for moldable jobs have been studied earlier in parallel 
computing [29-31]. [31] introduces an application scheduler that 
chooses on the behalf of the user, which request to submit for a 
particular job. It also uses a simulation in order to determine the 



best request. But the simulation is done by the user instead of the 
scheduler. Their work is mainly focused on the selection between 
the various possible requests. In [25] we extend this work to 
workflows and cast a workflow as a moldable job. In [25] we 
consider the resource utilization of the resulting schedule as an 
explicit metric to be optimized. When the user-level overlay can be 
formed from multiple resource requests instead of a single one, [32] 
describes a system for intelligent selection of resources constituting 
such overlays in order to minimize the allocation cost and the 
completion time of the workflows. In this paper, we go beyond 
simulations and use a real world application over an operational 
Grid infrastructure in order to showcase the benefits of clustering 
for workflows. 

Another related aspect is efficient scheduling and execution of the 
workflows tasks over the allocated resources when using overlay 
computing. Due to the distributed nature of the resources, the large 
number of tasks in the workflow and the dependencies between the 
tasks, there can be a non-negligible overhead involved in executing 
the workflow over the acquired resources [33, 34]. In [33], we have 
done a detailed analysis of the execution overhead when using the 
Condor system. We have used the insights gathered from that study 
for efficient execution of the Montage workflows as described in 
this paper.  

7. CONCLUSION AND FUTURE WORK 
We have shown that task clustering and overlay computing 
techniques can be very beneficial when scheduling large-scale fine-
computational-granularity workflows onto the national 
cyberinfrastructure resources. We presented different clustering 
techniques incorporated into the Pegasus workflow mapping system 
and shown the results of scheduling and running an astronomy 
application on the TeraGrid. For this application, we were able to 
reduce the overall workflow runtime by 97%. We can expect to see 
reduced benefits of clustering when workflows are composed of 
longer duration tasks.   

In the past year, a lot of work has been done in predicting queue 
wait times based on statistical models for the TeraGrid sites [35]. 
We plan to interface Pegasus with these queue prediction services, 
in order to automatically determine the clustering granularity for 
level-based clustering. As our experiments indicate, clustering is 
good for running short duration jobs. It is important that the 
clustered job does not become too large with a long requested wall 
clock time that results in the job waiting in the queue for a long 
period. Interfacing with queue prediction services will allow us to 
optimize the clustering so that the queue wait time is minimized. 

Currently, in the case of label-based clustering we can only execute 
jobs sequentially. However, this is inefficient for large clusters as 
the loss in parallelism might offset any gain in performance due to 
clustering. We propose to investigate the possibility of using a 
dependency manager such as Condor DAGMan [18] in order to 
execute tasks within a cluster on multiple nodes. 
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