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Abstract 
 The proliferation of commercial cloud computing 
providers has generated significant interest in the 
scientific computing community. Much recent research 
has attempted to determine the benefits and drawbacks 
of cloud computing for scientific applications. Although 
clouds have many attractive features, such as 
virtualization, on-demand provisioning, and “pay as 
you go” usage-based pricing, it is not clear whether 
they are able to deliver the performance required for 
scientific applications at a reasonable price. In this 
paper we examine the performance and cost of clouds 
from the perspective of scientific workflow applications. 
We use three characteristic workflows to compare the 
performance of a commercial cloud with that of a 
typical HPC system, and we analyze the various costs 
associated with running those workflows in the cloud. 
We find that the performance of clouds is not 
unreasonable given the hardware resources provided, 
and that performance comparable to HPC systems can 
be achieved given similar resources. We also find that 
the cost of running workflows on a commercial cloud 
can be reduced by storing data in the cloud rather than 
transferring it from outside. 

1. Introduction 
 The developers of scientific applications have 
many options when it comes to choosing a platform to 
run their applications. In the past these options 
included: local workstations, clusters, supercomputers 
and grids. Each of these choices offers various tradeoffs 
in terms of usability, performance, and cost. Recently, 
cloud computing has emerged as another promising 
solution for scientific applications and is rapidly 
gaining interest in the scientific community. 
 Many definitions of cloud computing have been 
proposed [4,34] [13]. These definitions vary in the 
scope of what constitutes a cloud and what features a 
cloud provides. For the purposes of this paper we 
consider a cloud to be a cluster that offers virtualized 
computational resources, service-oriented provisioning, 
and a “pay as you go” usage-based pricing model. 
Currently there are several commercial clouds that offer 
these features, such as Amazon EC2 [2], GoGrid [17], 
and FlexiScale [12]. In addition, it is now possible to 

build private clouds using open-source cloud 
computing middleware such as Eucalyptus [27], 
OpenNebula [28], and Nimbus [26]. 
 Clouds offer many technical and economic 
advantages over other platforms that are just 
beginning to be identified. They combine the 
customization of virtual machines, the scalability and 
resource sharing of grids, and the stability and 
economy of software as a service (SaaS). The use of 
virtualization in particular has been shown to provide 
many useful benefits for scientific applications, 
including: user-customization of system software and 
services, performance isolation, check-pointing and 
migration, better reproducibility of scientific 
analyses, and enhanced support for legacy 
applications [11][19]. 
 Recently, many studies have investigated the use 
of clouds and virtualization for scientific applications  
[33] [36] [24] [32] [35] [10] [16]. These studies have 
primarily focused on tightly-coupled applications and 
common HPC benchmarks. 
 In this paper we study the use of cloud 
computing for scientific workflows. Workflows are 
loosely-coupled parallel applications that consist of a 
series of computational tasks connected by data- and 
control-flow dependencies. Many scientific analyses 
are easily expressed as workflows and they are 
commonly used to solve problems in many 
disciplines [37].  
 Clouds provide several benefits for workflow 
applications. These benefits include: 

• Illusion of infinite resources—Unlike 
grids, clouds give the illusion that the 
available computing resources are unlimited. 
This means that users can request, and are 
likely to obtain, sufficient resources at any 
given time. Existing commercial clouds 
have a different workload than grids, 
however, and the illusion may break down 
for very large workflows, or if clouds 
become popular for scientific computing. 

• Leases—In grids and clusters the user 
specifies the amount of time required for a 
computation and delegates responsibility for 
allocating resources to a batch scheduler. In 
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clouds, the user directly allocates resources as 
required to schedule their computations. This 
model is ideal for workflows and other 
loosely-coupled applications because it 
decreases the scheduling overheads that can 
significantly reduce their performance. 

• Elasticity—Clouds allow users to acquire and 
release resources on-demand. This enables 
workflow systems to easily grow and shrink 
the available resource pool as the needs of the 
workflow change over time. 

 Previous work on the use of cloud computing for 
workflows has studied the cost and performance  of 
clouds via simulation [8] and using an experimental 
cloud [18]. In this paper we extend that work using 
several workflows that represent different domains and 
different resource requirements. We use an existing 
commercial cloud, Amazon’s EC2 [2], in order to 
assess the potential of currently deployed clouds. We 
analyze the cost of running the experiments on EC2, 
and compare the EC2 performance to a typical HPC 
system, NCSA’s Abe cluster [25]. 
 The contributions of this paper are: 

• an experimental study of the performance of 
three workflows with different I/O, memory 
and CPU requirements on a commercial cloud  

• a comparison of the performance of cloud 
resources and typical HPC resources, and 

• an analysis of the various costs associated with 
running workflows on a commercial cloud. 

In this paper we focus on single, multi-core node 
performance, which provides adequate capabilities for 
the applications we are evaluating in this paper. 

2. Applications 
 In order to evaluate the usefulness of cloud 
computing for scientific workflows we ran three 
different workflow applications: an astronomy 
application (Montage), a seismology application 
(Broadband), and a bioinformatics application 
(Epigenomics). These three applications were chosen 
because they cover a wide range of application domains 
and a wide range of resource requirements. Table 1 
shows the relative resource usage of these applications 
in three different categories: I/O, memory, and CPU. In 
general, applications with high I/O usage are I/O-
bound, applications with high memory usage are 
memory-limited, and applications with high CPU usage 
are CPU-bound. 
 Montage [21] creates science-grade astronomical 
image mosaics using data collected from telescopes. 
The size of a Montage workflow depends upon the area 
of the sky (in square degrees) covered by the output 
mosaic. In our experiments we configured Montage 
workflows to generate an 8-degree mosaic. The 
resulting workflow contains 10,429 tasks, reads 4.2 GB 

of input data, and produces 7.9 GB of output data. 
Montage is considered to be I/O-bound because it 
spends more than 95% of its time waiting on I/O 
operations. 
 Broadband [30] generates and compares 
seismograms from several high- and low-frequency 
earthquake simulation codes. Each workflow 
generates seismograms for several sources (scenario 
earthquakes) and sites (geographic locations). For 
each (source, site) combination the workflow runs 
several high- and low-frequency earthquake 
simulations and computes intensity measures of the 
resulting seismograms. In our experiments we used 4 
sources and 5 sites to generate a workflow containing 
320 tasks that reads 6 GB of input data and writes 
160 MB of output data. Broadband is considered to 
be memory-limited because more than 75% of its 
runtime is consumed by tasks requiring more than 1 
GB of physical memory. 
 Epigenome [31] maps short DNA segments 
collected using high-throughput gene sequencing 
machines to a previously constructed reference 
genome using the MAQ software [22]. The workflow 
splits several input segment files into small chunks, 
reformats and converts the chunks, maps the chunks 
to a reference genome, merges the mapped sequences 
into a single output map, and computes the sequence 
density for each location of interest in the reference 
genome. The workflow used in our experiments maps 
human DNA sequences to a reference chromosome 
21. The workflow contains 81 tasks, reads 1.8 GB of 
input data, and produces 300 MB of output data. 
Epigenomics is considered to be CPU-bound because 
it spends 99% of its runtime in the CPU and only 1% 
on I/O and other activities. 
 

Table 1: Application resource usage comparison 
Application I/O Memory CPU 
Montage High Low Low 
Broadband Medium High Medium 
Epigenomics Low Medium High 

3. Execution Environment 
 In this section we describe the experimental 
setup that was used to run workflows. We ran 
experiments on Amazon EC2 and NCSA’s Abe 
cluster. EC2 was chosen because it is currently the 
most popular, feature-rich, and stable commercial 
cloud. Abe was chosen because it is typical of the 
existing HPC systems a scientist could choose to run 
their workflow application and is therefore a logical 
alternative to EC2. 
 Workflows are loosely-coupled parallel 
applications that consist of a set of computational 
tasks linked via data- and control-flow dependencies. 
Unlike tightly-coupled applications in which tasks 



communicate directly via the network, workflow tasks 
typically communicate using the file system. Each task 
produces one or more output files that become input 
files to other tasks. In HPC systems these files are 
typically stored on a network file system, which allows 
the workflow to run in parallel on several nodes. 
 One of the advantages of HPC systems over 
currently deployed commercial clouds is the availability 
of high-performance I/O devices. HPC systems 
commonly provide high-speed networks and parallel 
file systems, while most commercial clouds use 
commodity networking and storage devices. These 
high-performance devices increase workflow 
performance by making inter-task communication more 
efficient. In order to have an unbiased comparison of 
the performance of workflows on EC2 and Abe, the 
experiments presented in this paper attempt to account 
for these differences by a) running all experiments on 
single nodes and b) running experiments using the local 
disk on both EC2 and Abe, and the parallel file system 
on Abe. 
 The use of single nodes minimizes the advantage 
that Abe has as a result of having a high-speed 
interconnect. Although single-node experiments do not 
enable us to measure the scalability of cloud services 
they do provide an application-oriented understanding 
of the capabilities of the underlying resources that can 
help in making provisioning decisions. Testing the 
scalability of cloud services when running workflows 
on multiple nodes is left for future work. 
 Running experiments using both the parallel file 
system and the local disk on Abe allows us to determine 
what performance advantage, if any, Abe nodes have as 
a result of parallel I/O. It is expected that the use of a 
parallel file system will significantly improve the 
runtime of I/O-intensive applications like Montage, but 
will be less of an advantage for CPU-intensive 
applications like Epigenome. 
3.1 Resources 
 Table 2 compares the resource types used for the 
experiments. It lists 5 resource types from EC2 (m1.* 
and c1.*) and 2 resource types from Abe (abe.local and 
abe.lustre). There are several noteworthy details about 
the resources shown. First, although there is actually 
only one type of Abe node, there are two types listed in 
the table: abe.local and abe.lustre. The actual hardware 

used for these types is equivalent, the difference is in 
how I/O is handled. The abe.local type uses a local 
partition for I/O, and the abe.lustre type uses a Lustre 
partition for I/O. Using two different names is simply 
a notational convenience. 
 Second, in terms of computational capacity, the 
c1.xlarge resource type is roughly equivalent to the 
abe.local resource type with the exception that 
abe.local has slightly more memory. We use this fact 
to estimate the virtualization overhead for our test 
applications on EC2. 
 Third, in rare cases EC2 assigns Xeon processors 
for m1.* instances, but for all of the experiments 
reported here the m1.* instances used were equipped 
with Opteron processors. The only significance is 
that Xeon processors have better floating-point 
performance than Opteron processors (4 FLOP/cycle 
vs. 2 FLOP/cycle). 
 Finally, the m1.small instance type is shown 
having ½ core. This is possible because of 
virtualization. EC2 nodes are configured to give 
m1.small instances access to the processor only 50% 
of the time. This allows a single processor core to be 
shared equally between two separate m1.small 
instances. 
3.2 Software 
 All workflows were planned and executed using 
the Pegasus Workflow Management System [9] with 
DAGMan [6] and Condor [23]. Pegasus is used to 
transform abstract workflow descriptions into 
concrete plans, which are then executed using 
DAGMan to manage task dependencies, and Condor 
to manage task execution. 
 The software was deployed on EC2 as shown in 
Figure 1. A submit host running outside the cloud 
was used to coordinate the workflow, and worker 
nodes were started inside the cloud to execute 
workflow tasks. Two virtual machine images were 
used to start worker nodes: one for 32-bit instance 
types and one for 64-bit instance types. Both images 
were based on the standard Fedora Core 8 images 
provided by Amazon. To the base images we added 
Condor, Pegasus and other miscellaneous packages 
required to compile and run the selected applications. 
Compressed, the 32-bit image was 773 MB and the 
64-bit image was 729 MB. Uncompressed, the 32-bit 

Table 2: Resource types used 
Type Arch. CPU Cores Memory Network Storage Price 
m1.small 32-bit 2.0-2.6 GHz Opteron 1/2 1.7 GB 1-Gbps Ethernet Local disk $0.10/hr 
m1.large 64-bit 2.0-2.6 GHz Opteron 2 7.5 GB 1-Gbps Ethernet Local disk $0.40/hr 
m1.xlarge 64-bit 2.0-2.6 GHz Opteron 4 15 GB 1-Gbps Ethernet Local disk $0.80/hr 
c1.medium 32-bit 2.33-2.66 GHz Xeon 2 1.7 GB 1-Gbps Ethernet Local disk $0.20/hr 
c1.xlarge 64-bit 2.33-2.66 GHz Xeon 8 7.5 GB 1-Gbps Ethernet Local disk $0.80/hr 
abe.local 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Local disk N/A 
abe.lustre 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Lustre N/A 



image was 2.1 GB and the 64-bit image was 2.2 GB. 
The images did not include any application-specific 
configurations, so we were able to use the same set of 
images for all experiments. All images are stored in 
Amazon S3 [3]. S3 is an object-based, replicated 
storage service that supports simple PUT and GET 
operations on file-like binary objects. 
 For the Abe experiments Globus [14] and Corral 
[7] were used to deploy Condor glideins [15] as shown 
in Figure 2. The glideins started Condor daemons on 
the Abe worker nodes, which contacted the submit host 
and were used to execute workflow tasks. This 
approach creates an execution environment on Abe that 
is equivalent to the EC2 environment. 
 

 
Figure 1: Execution environment on EC2 

 

 
Figure 2: Execution environment on Abe 

3.3 Storage 
 To run workflows we need to allocate storage for 
1) application executables, 2) input data, and 3) 
intermediate and output data. In a typical workflow 
application executables are pre-installed on the 
execution site, input data is copied from an archive to 
the execution site, and output data is copied from the 
execution site to an archive. For these experiments, 
executables and input data were pre-staged to the 
execution site, and output data were not transferred 
from the execution site. 
 For EC2, executables were installed in the VM 
images, intermediate and output data was written to a 
local partition, and input data was stored on EBS 
volumes.  
 The Elastic Block Store (EBS) [1] is a SAN-like, 
replicated, block-based storage service that can be used 
with EC2 instances. EBS volumes can be created in any 
size between 1 GB and 1 TB and appear as standard, 
unformatted block devices when attached to an EC2 

instance. As such, EBS volumes can be formatted 
with standard UNIX file systems and used like an 
ordinary disk, but they cannot be shared between 
multiple instances. 
 EBS was chosen to store input data for a number 
of reasons. First, storing inputs in the cloud obviates 
the need to transfer input data repeatedly. This saves 
both time and money because transfers cost more 
than storage. Second, using EBS avoids the 10 GB 
limit on VM images, which is too small to include the 
input data for all the applications tested. We can 
access the data as if it were on a local disk without 
packaging it in the VM image. A simple experiment 
using the disk copy utility ‘dd’ showed similar 
performance reading from EBS volumes and the local 
disk (74.6 MB/s for local, and 74.2 MB/s for EBS). 
Finally, using EBS simplifies our setup by allowing 
us to reuse the same volume for multiple 
experiments. When we need to change instances we 
just detach the volume from one instance and re-
attach it to another. 
 For Abe, all application executables and input 
files were stored in the Lustre file system. For 
abe.local experiments the input data was copied to a 
local partition (/tmp) before running the workflow, 
and all intermediate and output data was written to 
the same local partition. For abe.lustre, all 
intermediate and output data was written to the 
Lustre file system. 

4. Performance Comparison 
 In this section we compare the performance of 
the selected workflow applications by executing them 
on Abe and EC2. The critical performance metric we 
are concerned with is the runtime of the workflow 
(also known as the makespan), which is the total 
amount of wall clock time from the moment the first 
workflow task is submitted until the last task 
completes. The runtimes reported for EC2 do not 
include the time required to install and boot the VM, 
which typically averages between 70 and 90 seconds 
[20], and the runtimes reported for Abe do not 
include the time glidein jobs spend waiting in the 
queue, which is highly dependent on the current 
system load. Also, the runtimes do not include the 
time required to transfer input and output data (see 
Table 4). We assume that this time will be variable 
depending on WAN conditions. A study of 
bandwidth to/from Amazon services is presented in 
[29]. In our experiments we typically observed 
bandwidth on the order of  500-1000KB/s between 
EC2 and our submit host in Marina del Rey, CA. 
 We estimate the virtualization overhead for each 
application by comparing the runtime on c1.xlarge 
with the runtime on abe.local. Measuring the 
difference in runtime between these two resource 



types should provide a good estimate of the cost of 
virtualization.  
 Figure 3 shows the runtime of the selected 
applications using the resource types shown in Table 2. 
In all cases the m1.small resource type had the worst 
runtime by a large margin. This is not surprising given 
its relatively low capabilities. 
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Figure 3: Runtime comparison 

4.1 Montage 
 For Montage the best EC2 performance was 
achieved on the m1.xlarge type. This is likely due to the 
fact that m1.xlarge has twice as much memory as the 
next best resource type. The extra memory is used by 
the Linux kernel for the file system buffer cache to 
reduce the amount of time the application spends 
waiting for I/O. This is particularly beneficial for 
Montage, which is very I/O-intensive. 
 The best overall performance for Montage was 
achieved using the abe.lustre configuration, which was 
more than twice as fast as abe.local. This large gap 
suggests that having a parallel file system is a 
significant advantage for I/O-bound applications like 
Montage. 
 The difference in runtime between the c1.xlarge 
and abe.local experiments suggests that the 
virtualization overhead for Montage is less than 8%. 
4.2 Broadband 
 The best overall runtime for Broadband was 
achieved by using the abe.lustre resource type, and the 
best EC2 runtime was achieved using the c1.xlarge 
resource type. This is despite the fact that only 6 of the 
8 cores on c1.xlarge and abe.lustre could be used due to 
memory limitations. 
 Unlike Montage the difference between running 
Broadband on a relatively slow local disk (abe.local) 
and running on the parallel file system (abe.lustre) is 
not as significant. This is attributed to the lower I/O 
requirements of Broadband. 
 Broadband performs the worst on m1.small and 
c1.medium, which also have the lowest amount 
memory (1.7 GB). This is because m1.small has only 

half a core, and c1.medium can only use one of its 
two cores because of memory limitations. 
 The difference between the runtime using 
c1.xlarge and the runtime using abe.local was only 
about 1%. This small difference suggests a relatively 
low virtualization penalty for Broadband. 
4.3 Epigenomics 
 For Epigenomics the best EC2 runtime was 
achieved using c1.xlarge and the best overall runtime 
was achieved using abe.lustre. The primary factor 
affecting the performance of Epigenome was the 
availability of processor cores, with more cores 
resulting in a lower runtime. This is expected given 
that Epigenome is almost entirely CPU-bound. 
 The difference between the abe.lustre and 
abe.local runtimes was only about 2%, which is 
consistent with the fact that Epigenome has relatively 
low I/O and is therefore less affected by the parallel 
file system. 
 The difference between the abe.local and the 
c1.xlarge runtimes suggest that the virtualization 
overhead for this application is around 10%, which is 
higher than both Montage and Broadband. This may 
suggest that virtualization has a larger impact on 
CPU-bound applications. 

5. Cost Analysis 
 In this section we analyze the cost of running 
workflow applications in the cloud. We consider 
three different cost categories: resource cost, storage 
cost, and transfer cost. Resource cost includes 
charges for the use of VM instances in EC2; storage 
cost includes charges for keeping VM images in S3 
and input data in EBS; and transfer cost includes 
charges for moving input data, output data and log 
files between the submit host and EC2. 
5.1 Resource Cost 
 Each of the five resource types Amazon offers is 
charged at a different hourly rate: $0.10/hr for 
m1.small, $0.40/hr for m1.large, $0.80/hr for 
m1.xlarge, $0.20/hr for c1.medium, and $0.80/hr for 
c1.xlarge. Usage is rounded up to the nearest hour, so 
any partial hours are charged as full hours. 
 Figure 4 shows the per-workflow resource cost 
for the applications tested. Although it did not 
perform the best in any of our experiments, the most 
cost-effective instance type was c1.medium, which 
had the lowest execution cost for all three 
applications. 
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Figure 4: Resource cost comparison 

5.2 Storage Cost 
 Storage cost consists of a) the cost to store VM 
images in S3, and b) the cost of storing input data in 
EBS. Both S3 and EBS use fixed monthly charges for 
the storage of data, and variable usage charges for 
accessing the data. The fixed charges are $0.15 per GB-
month for S3, and $0.10 per GB-month for EBS. The 
variable charges are $0.01 per 1,000 PUT operations 
and $0.01 per 10,000 GET operations for S3, and $0.10 
per million I/O operations for EBS. We report the fixed 
cost per month, and the total variable cost for all 
experiments performed.  
 We used a 32-bit and a 64-bit VM image for all of 
the experiments in this paper. The 32-bit image was 773 
MB and the 64-bit image was 729 MB for a total fixed 
cost of $0.22 per month. In addition, there were 4616 
GET operations and 2560 PUT operations for a total 
variable cost of approximately $0.03. 
 The fixed monthly cost of storing input data for the 
three applications is shown in Table 3. In addition, 
there were 3.18 million I/O operations for a total 
variable cost of $0.30. 
 

Table 3: Monthly storage cost 
Application Volume Size Monthly Cost 
Montage 5GB $0.66 
Broadband 5GB $0.60 
Epigenome 2GB $0.26 

5.3 Transfer Cost 
 In addition to resource and storage charges, 
Amazon charges $0.10 per GB for transfer into, and 
$0.17 per GB for transfer out of, the EC2 cloud. Tables 
4 and 5 show the per-workflow transfer sizes and costs 
for the three applications studied. Input is the amount of 
input data to the workflow, output is the amount of 
output data, and logs is the amount of logging data that 
is recorded for workflow tasks and transferred back to 
the submit host. The cost of the protocol used by 
Condor to communicate between the submit host and 
the workers is not included, but it is estimated to be less 
than $0.01 per workflow. 
 
 

Table 4: Per-workflow transfer sizes 
Application Input  Output Logs 
Montage 4291 MB  7970 MB  40 MB  
Broadband 4109 MB  159 MB  5.5 MB 
Epigenome 1843 MB  299 MB  3.3 MB  

 
Table 5: Per-workflow transfer costs 
Application Input  Output Logs Total 
Montage $0.42  $1.32  < $0.01  $1.75 
Broadband $0.40  $0.03  < $0.01 $0.43 
Epigenome $0.18  $0.05  < $0.01  $0.23 

6. Discussion 
6.1 Performance 
 Based on these experiments we believe the 
performance of workflows on EC2 is reasonable 
given the resources that can be provisioned. Although 
the EC2 performance was not as good as the 
performance on Abe, most of the resources provided 
by EC2 are also less powerful. In the cases where the 
resources are similar, the performance was found to 
comparable. The EC2 c1.xlarge type, which is nearly 
equivalent to abe.local, delivered performance that 
was nearly the same as abe.local in our experiments. 
 For I/O-intensive workflows like Montage, EC2 
is at a significant disadvantage because of the lack of 
high-performance parallel file systems. While such a 
file system could conceivably be constructed from 
the raw components available in EC2, the cost of 
deploying such a system would be prohibitive. In 
addition, because EC2 uses commodity networking 
equipment it is unlikely that there would be a 
significant advantage in shifting I/O from a local 
partition to a parallel file system across the network, 
because the bottleneck would simply shift from the 
disk to the network interface. In order to compete 
performance-wise with Abe for I/O-intensive 
applications, Amazon would need to deploy both a 
parallel file system and a high-speed interconnect. 
 For memory-intensive applications like 
Broadband, EC2 can achieve nearly the same 
performance as Abe as long as there is more than 1 
GB of memory per core. If there is less, then some 
cores must sit idle to prevent the system from running 
out of memory or swapping. This is not strictly an 
EC2 problem, the same issue affects Abe as well. 
 For CPU-intensive applications like Epigenome, 
EC2 can deliver comparable performance given 
equivalent resources. The virtualization overhead 
does not seem to be a significant barrier to 
performance for such applications. In fact, the 
virtualization overhead measured for all application 
less than 10%. This is consistent with previous 
studies that show similar virtualization overheads 
[5,16,36]. As such, virtualization does not seem, by 
itself, to be a significant performance problem for 



clouds. As virtualization technologies improve it is 
likely that what little overhead there is will be further 
reduced or eliminated. 
6.2 Cost 
 The first thing to consider when provisioning 
resources on EC2 is the tradeoff between performance 
and cost. In general, EC2 resources obey the aphorism 
“you get what you pay for”—resources that cost more 
perform better than resources that cost less. For the 
applications tested, c1.medium was the most cost-
effective resource type even though it did not have the 
lowest hourly rate, because the type with the lowest rate 
(m1.small) performed so badly. 
 Another important thing to consider when using 
EC2 is the tradeoff between storage cost and transfer 
cost. Users have the option of either a) transferring 
input data for each workflow separately, or b) 
transferring input data once, storing it in the cloud, and 
using the stored data for multiple workflow runs. The 
choice of which approach to employ will depend on 
how many times the data will be used, how long the 
data will be stored, and how frequently the data will be 
accessed. In general, storage is more cost-effective for 
input data that is reused often and accessed frequently, 
and transfer is more cost-effective if data will be used 
only once. For the applications tested in this paper, the 
monthly cost to store input data is only slightly more 
than the cost to transfer it once. Therefore, for these 
applications, it is usually more cost-effective to store 
the input data rather than transfer the data for each 
workflow. 
 Although the cost of transferring input data can be 
easily amortized by storing it in the cloud, the cost of 
transferring output data may be more difficult to 
reduce. For many applications the output data is much 
smaller than the input data, so the cost of transferring it 
out may not be significant. This is the case for 
Broadband and Epigenome, for example. For other 
applications the large size of output data may be cost-
prohibitive. In Montage, for example, the output is 
actually larger than the input and costs nearly as much 
to transfer as it does to compute. For these applications 
it may be possible to leave the output in the cloud and 
perform additional analyses there rather than to transfer 
it back to the submit host. 
 In [8] the cost of running 1-, 2-, and 4-degree 
Montage workflows on EC2 was studied via simulation. 
That paper found the lowest total cost of a 1-degree 
workflow to be $0.60, a 2-degree to be $2.25, and a 4-
degree to be $9.00. In comparison, we found the total 
cost of an 8-degree workflow, which is 4 times larger 
than a 4-degree workflow, to be approximately $1.25 if 
data is stored for an entire month, and $2.35 if data is 
transferred. This difference is primarily due to an 
underestimate of the performance of EC2 that was used 

in the simulation, which produced much longer 
simulated runtimes. 
 Finally, the total cost of all the experiments 
presented in this paper was $149.55. That includes all 
charges related to learning to use EC2, creating VM 
images, and running test and experimental 
workflows. 

7. Conclusion 
 In this paper we examined the performance and 
cost of running scientific workflow applications in 
the cloud using Amazon’s EC2 as a model. We ran 
several workflow applications representing diverse 
application domains and resource requirements on 
EC2 and compared the performance to NCSA’s Abe 
cluster. We found that although the performance of 
EC2 was not equivalent to Abe in most cases, it was 
reasonable given the resources available. The primary 
advantages of Abe were found to be the availability 
of a high-speed interconnect, and a parallel file 
system, which significantly improved the 
performance of the I/O-intensive application. 
Factoring out these advantages by running additional 
Abe tests using the local disk shows that, given 
equivalent resources, EC2 is capable of performance 
close to that of Abe. All other things being equal the 
only difference was a small virtualization overhead in 
EC2, which was measured to be between 1% and 
10% for the applications tested. 
 We also analyzed the cost of running workflows 
on EC2. We found that the primary cost was in 
acquiring resources to execute workflow tasks, and 
that storage costs were relatively small in 
comparison. The cost of data transfers, although 
relatively high, can be effectively reduced by storing 
data in the cloud rather than transferring it for each 
workflow. In addition, we found the cost of running 
workflows in the cloud to be much less, and the 
performance to be much better, than suggested by 
previous research. 
 These results indicate that clouds are a viable 
alternative for running scientific workflow 
applications, but unless cloud providers begin 
offering high-speed networks and parallel file 
systems they are unlikely to compete with existing 
HPC systems in terms of performance. 
 In this paper we focused on the case where only 
a single node is used to run a workflow. In the future 
we plan to extend this work to study the performance 
and cost of clouds when multiple nodes are used. 
That study will include an analysis of the various 
ways in which data can be communicated between 
workflow tasks in a cloud. 
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