
Scientific Workflow Applications on Amazon EC2

Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta
USC Information Sciences Institute

{gideon,deelman,vahi,gmehta}@isi.edu

Bruce Berriman
NASA Exoplanet Science Institute, Infrared
Processing and Analysis Center, Caltech

gbb@ipac.caltech.edu

Benjamin P. Berman

USC Epigenome Center
bberman@usc.edu

Phil Maechling

Southern California Earthquake Center
maechlin@usc.edu

Abstract
 The proliferation of commercial cloud computing
providers has generated significant interest in the
scientific computing community. Much recent research
has attempted to determine the benefits and drawbacks
of cloud computing for scientific applications. Although
clouds have many attractive features, such as
virtualization, on-demand provisioning, and “pay as
you go” usage-based pricing, it is not clear whether
they are able to deliver the performance required for
scientific applications at a reasonable price. In this
paper we examine the performance and cost of clouds
from the perspective of scientific workflow applications.
We use three characteristic workflows to compare the
performance of a commercial cloud with that of a
typical HPC system, and we analyze the various costs
associated with running those workflows in the cloud.
We find that the performance of clouds is not
unreasonable given the hardware resources provided,
and that performance comparable to HPC systems can
be achieved given similar resources. We also find that
the cost of running workflows on a commercial cloud
can be reduced by storing data in the cloud rather than
transferring it from outside.

1. Introduction
 The developers of scientific applications have
many options when it comes to choosing a platform to
run their applications. In the past these options
included: local workstations, clusters, supercomputers
and grids. Each of these choices offers various tradeoffs
in terms of usability, performance, and cost. Recently,
cloud computing has emerged as another promising
solution for scientific applications and is rapidly
gaining interest in the scientific community.
 Many definitions of cloud computing have been
proposed [4,34] [13]. These definitions vary in the
scope of what constitutes a cloud and what features a
cloud provides. For the purposes of this paper we
consider a cloud to be a cluster that offers virtualized
computational resources, service-oriented provisioning,
and a “pay as you go” usage-based pricing model.
Currently there are several commercial clouds that offer
these features, such as Amazon EC2 [2], GoGrid [17],
and FlexiScale [12]. In addition, it is now possible to

build private clouds using open-source cloud
computing middleware such as Eucalyptus [27],
OpenNebula [28], and Nimbus [26].
 Clouds offer many technical and economic
advantages over other platforms that are just
beginning to be identified. They combine the
customization of virtual machines, the scalability and
resource sharing of grids, and the stability and
economy of software as a service (SaaS). The use of
virtualization in particular has been shown to provide
many useful benefits for scientific applications,
including: user-customization of system software and
services, performance isolation, check-pointing and
migration, better reproducibility of scientific
analyses, and enhanced support for legacy
applications [11][19].
 Recently, many studies have investigated the use
of clouds and virtualization for scientific applications
[33] [36] [24] [32] [35] [10] [16]. These studies have
primarily focused on tightly-coupled applications and
common HPC benchmarks.
 In this paper we study the use of cloud
computing for scientific workflows. Workflows are
loosely-coupled parallel applications that consist of a
series of computational tasks connected by data- and
control-flow dependencies. Many scientific analyses
are easily expressed as workflows and they are
commonly used to solve problems in many
disciplines [37].
 Clouds provide several benefits for workflow
applications. These benefits include:

• Illusion of infinite resources—Unlike
grids, clouds give the illusion that the
available computing resources are unlimited.
This means that users can request, and are
likely to obtain, sufficient resources at any
given time. Existing commercial clouds
have a different workload than grids,
however, and the illusion may break down
for very large workflows, or if clouds
become popular for scientific computing.

• Leases—In grids and clusters the user
specifies the amount of time required for a
computation and delegates responsibility for
allocating resources to a batch scheduler. In

gbb
Sticky Note
G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, and
P. Maechling, "Scientific Workflow Applications on Amazon EC2," in Cloud
Computing Workshop in Conjunction with e-Science Oxford, UK: IEEE, 2009

clouds, the user directly allocates resources as
required to schedule their computations. This
model is ideal for workflows and other
loosely-coupled applications because it
decreases the scheduling overheads that can
significantly reduce their performance.

• Elasticity—Clouds allow users to acquire and
release resources on-demand. This enables
workflow systems to easily grow and shrink
the available resource pool as the needs of the
workflow change over time.

 Previous work on the use of cloud computing for
workflows has studied the cost and performance of
clouds via simulation [8] and using an experimental
cloud [18]. In this paper we extend that work using
several workflows that represent different domains and
different resource requirements. We use an existing
commercial cloud, Amazon’s EC2 [2], in order to
assess the potential of currently deployed clouds. We
analyze the cost of running the experiments on EC2,
and compare the EC2 performance to a typical HPC
system, NCSA’s Abe cluster [25].
 The contributions of this paper are:

• an experimental study of the performance of
three workflows with different I/O, memory
and CPU requirements on a commercial cloud

• a comparison of the performance of cloud
resources and typical HPC resources, and

• an analysis of the various costs associated with
running workflows on a commercial cloud.

In this paper we focus on single, multi-core node
performance, which provides adequate capabilities for
the applications we are evaluating in this paper.

2. Applications
 In order to evaluate the usefulness of cloud
computing for scientific workflows we ran three
different workflow applications: an astronomy
application (Montage), a seismology application
(Broadband), and a bioinformatics application
(Epigenomics). These three applications were chosen
because they cover a wide range of application domains
and a wide range of resource requirements. Table 1
shows the relative resource usage of these applications
in three different categories: I/O, memory, and CPU. In
general, applications with high I/O usage are I/O-
bound, applications with high memory usage are
memory-limited, and applications with high CPU usage
are CPU-bound.
 Montage [21] creates science-grade astronomical
image mosaics using data collected from telescopes.
The size of a Montage workflow depends upon the area
of the sky (in square degrees) covered by the output
mosaic. In our experiments we configured Montage
workflows to generate an 8-degree mosaic. The
resulting workflow contains 10,429 tasks, reads 4.2 GB

of input data, and produces 7.9 GB of output data.
Montage is considered to be I/O-bound because it
spends more than 95% of its time waiting on I/O
operations.
 Broadband [30] generates and compares
seismograms from several high- and low-frequency
earthquake simulation codes. Each workflow
generates seismograms for several sources (scenario
earthquakes) and sites (geographic locations). For
each (source, site) combination the workflow runs
several high- and low-frequency earthquake
simulations and computes intensity measures of the
resulting seismograms. In our experiments we used 4
sources and 5 sites to generate a workflow containing
320 tasks that reads 6 GB of input data and writes
160 MB of output data. Broadband is considered to
be memory-limited because more than 75% of its
runtime is consumed by tasks requiring more than 1
GB of physical memory.
 Epigenome [31] maps short DNA segments
collected using high-throughput gene sequencing
machines to a previously constructed reference
genome using the MAQ software [22]. The workflow
splits several input segment files into small chunks,
reformats and converts the chunks, maps the chunks
to a reference genome, merges the mapped sequences
into a single output map, and computes the sequence
density for each location of interest in the reference
genome. The workflow used in our experiments maps
human DNA sequences to a reference chromosome
21. The workflow contains 81 tasks, reads 1.8 GB of
input data, and produces 300 MB of output data.
Epigenomics is considered to be CPU-bound because
it spends 99% of its runtime in the CPU and only 1%
on I/O and other activities.

Table 1: Application resource usage comparison
Application I/O Memory CPU
Montage High Low Low
Broadband Medium High Medium
Epigenomics Low Medium High

3. Execution Environment
 In this section we describe the experimental
setup that was used to run workflows. We ran
experiments on Amazon EC2 and NCSA’s Abe
cluster. EC2 was chosen because it is currently the
most popular, feature-rich, and stable commercial
cloud. Abe was chosen because it is typical of the
existing HPC systems a scientist could choose to run
their workflow application and is therefore a logical
alternative to EC2.
 Workflows are loosely-coupled parallel
applications that consist of a set of computational
tasks linked via data- and control-flow dependencies.
Unlike tightly-coupled applications in which tasks

communicate directly via the network, workflow tasks
typically communicate using the file system. Each task
produces one or more output files that become input
files to other tasks. In HPC systems these files are
typically stored on a network file system, which allows
the workflow to run in parallel on several nodes.
 One of the advantages of HPC systems over
currently deployed commercial clouds is the availability
of high-performance I/O devices. HPC systems
commonly provide high-speed networks and parallel
file systems, while most commercial clouds use
commodity networking and storage devices. These
high-performance devices increase workflow
performance by making inter-task communication more
efficient. In order to have an unbiased comparison of
the performance of workflows on EC2 and Abe, the
experiments presented in this paper attempt to account
for these differences by a) running all experiments on
single nodes and b) running experiments using the local
disk on both EC2 and Abe, and the parallel file system
on Abe.
 The use of single nodes minimizes the advantage
that Abe has as a result of having a high-speed
interconnect. Although single-node experiments do not
enable us to measure the scalability of cloud services
they do provide an application-oriented understanding
of the capabilities of the underlying resources that can
help in making provisioning decisions. Testing the
scalability of cloud services when running workflows
on multiple nodes is left for future work.
 Running experiments using both the parallel file
system and the local disk on Abe allows us to determine
what performance advantage, if any, Abe nodes have as
a result of parallel I/O. It is expected that the use of a
parallel file system will significantly improve the
runtime of I/O-intensive applications like Montage, but
will be less of an advantage for CPU-intensive
applications like Epigenome.
3.1 Resources
 Table 2 compares the resource types used for the
experiments. It lists 5 resource types from EC2 (m1.*
and c1.*) and 2 resource types from Abe (abe.local and
abe.lustre). There are several noteworthy details about
the resources shown. First, although there is actually
only one type of Abe node, there are two types listed in
the table: abe.local and abe.lustre. The actual hardware

used for these types is equivalent, the difference is in
how I/O is handled. The abe.local type uses a local
partition for I/O, and the abe.lustre type uses a Lustre
partition for I/O. Using two different names is simply
a notational convenience.
 Second, in terms of computational capacity, the
c1.xlarge resource type is roughly equivalent to the
abe.local resource type with the exception that
abe.local has slightly more memory. We use this fact
to estimate the virtualization overhead for our test
applications on EC2.
 Third, in rare cases EC2 assigns Xeon processors
for m1.* instances, but for all of the experiments
reported here the m1.* instances used were equipped
with Opteron processors. The only significance is
that Xeon processors have better floating-point
performance than Opteron processors (4 FLOP/cycle
vs. 2 FLOP/cycle).
 Finally, the m1.small instance type is shown
having ½ core. This is possible because of
virtualization. EC2 nodes are configured to give
m1.small instances access to the processor only 50%
of the time. This allows a single processor core to be
shared equally between two separate m1.small
instances.
3.2 Software
 All workflows were planned and executed using
the Pegasus Workflow Management System [9] with
DAGMan [6] and Condor [23]. Pegasus is used to
transform abstract workflow descriptions into
concrete plans, which are then executed using
DAGMan to manage task dependencies, and Condor
to manage task execution.
 The software was deployed on EC2 as shown in
Figure 1. A submit host running outside the cloud
was used to coordinate the workflow, and worker
nodes were started inside the cloud to execute
workflow tasks. Two virtual machine images were
used to start worker nodes: one for 32-bit instance
types and one for 64-bit instance types. Both images
were based on the standard Fedora Core 8 images
provided by Amazon. To the base images we added
Condor, Pegasus and other miscellaneous packages
required to compile and run the selected applications.
Compressed, the 32-bit image was 773 MB and the
64-bit image was 729 MB. Uncompressed, the 32-bit

Table 2: Resource types used
Type Arch. CPU Cores Memory Network Storage Price
m1.small 32-bit 2.0-2.6 GHz Opteron 1/2 1.7 GB 1-Gbps Ethernet Local disk $0.10/hr
m1.large 64-bit 2.0-2.6 GHz Opteron 2 7.5 GB 1-Gbps Ethernet Local disk $0.40/hr
m1.xlarge 64-bit 2.0-2.6 GHz Opteron 4 15 GB 1-Gbps Ethernet Local disk $0.80/hr
c1.medium 32-bit 2.33-2.66 GHz Xeon 2 1.7 GB 1-Gbps Ethernet Local disk $0.20/hr
c1.xlarge 64-bit 2.33-2.66 GHz Xeon 8 7.5 GB 1-Gbps Ethernet Local disk $0.80/hr
abe.local 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Local disk N/A
abe.lustre 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Lustre N/A

image was 2.1 GB and the 64-bit image was 2.2 GB.
The images did not include any application-specific
configurations, so we were able to use the same set of
images for all experiments. All images are stored in
Amazon S3 [3]. S3 is an object-based, replicated
storage service that supports simple PUT and GET
operations on file-like binary objects.
 For the Abe experiments Globus [14] and Corral
[7] were used to deploy Condor glideins [15] as shown
in Figure 2. The glideins started Condor daemons on
the Abe worker nodes, which contacted the submit host
and were used to execute workflow tasks. This
approach creates an execution environment on Abe that
is equivalent to the EC2 environment.

Figure 1: Execution environment on EC2

Figure 2: Execution environment on Abe

3.3 Storage
 To run workflows we need to allocate storage for
1) application executables, 2) input data, and 3)
intermediate and output data. In a typical workflow
application executables are pre-installed on the
execution site, input data is copied from an archive to
the execution site, and output data is copied from the
execution site to an archive. For these experiments,
executables and input data were pre-staged to the
execution site, and output data were not transferred
from the execution site.
 For EC2, executables were installed in the VM
images, intermediate and output data was written to a
local partition, and input data was stored on EBS
volumes.
 The Elastic Block Store (EBS) [1] is a SAN-like,
replicated, block-based storage service that can be used
with EC2 instances. EBS volumes can be created in any
size between 1 GB and 1 TB and appear as standard,
unformatted block devices when attached to an EC2

instance. As such, EBS volumes can be formatted
with standard UNIX file systems and used like an
ordinary disk, but they cannot be shared between
multiple instances.
 EBS was chosen to store input data for a number
of reasons. First, storing inputs in the cloud obviates
the need to transfer input data repeatedly. This saves
both time and money because transfers cost more
than storage. Second, using EBS avoids the 10 GB
limit on VM images, which is too small to include the
input data for all the applications tested. We can
access the data as if it were on a local disk without
packaging it in the VM image. A simple experiment
using the disk copy utility ‘dd’ showed similar
performance reading from EBS volumes and the local
disk (74.6 MB/s for local, and 74.2 MB/s for EBS).
Finally, using EBS simplifies our setup by allowing
us to reuse the same volume for multiple
experiments. When we need to change instances we
just detach the volume from one instance and re-
attach it to another.
 For Abe, all application executables and input
files were stored in the Lustre file system. For
abe.local experiments the input data was copied to a
local partition (/tmp) before running the workflow,
and all intermediate and output data was written to
the same local partition. For abe.lustre, all
intermediate and output data was written to the
Lustre file system.

4. Performance Comparison
 In this section we compare the performance of
the selected workflow applications by executing them
on Abe and EC2. The critical performance metric we
are concerned with is the runtime of the workflow
(also known as the makespan), which is the total
amount of wall clock time from the moment the first
workflow task is submitted until the last task
completes. The runtimes reported for EC2 do not
include the time required to install and boot the VM,
which typically averages between 70 and 90 seconds
[20], and the runtimes reported for Abe do not
include the time glidein jobs spend waiting in the
queue, which is highly dependent on the current
system load. Also, the runtimes do not include the
time required to transfer input and output data (see
Table 4). We assume that this time will be variable
depending on WAN conditions. A study of
bandwidth to/from Amazon services is presented in
[29]. In our experiments we typically observed
bandwidth on the order of 500-1000KB/s between
EC2 and our submit host in Marina del Rey, CA.
 We estimate the virtualization overhead for each
application by comparing the runtime on c1.xlarge
with the runtime on abe.local. Measuring the
difference in runtime between these two resource

types should provide a good estimate of the cost of
virtualization.
 Figure 3 shows the runtime of the selected
applications using the resource types shown in Table 2.
In all cases the m1.small resource type had the worst
runtime by a large margin. This is not surprising given
its relatively low capabilities.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Montage Broadband Epigenome
Application

m1.small
m1.large
m1.xlarge
c1.medium
c1.xlarge
abe.lustre
abe.local

Figure 3: Runtime comparison

4.1 Montage
 For Montage the best EC2 performance was
achieved on the m1.xlarge type. This is likely due to the
fact that m1.xlarge has twice as much memory as the
next best resource type. The extra memory is used by
the Linux kernel for the file system buffer cache to
reduce the amount of time the application spends
waiting for I/O. This is particularly beneficial for
Montage, which is very I/O-intensive.
 The best overall performance for Montage was
achieved using the abe.lustre configuration, which was
more than twice as fast as abe.local. This large gap
suggests that having a parallel file system is a
significant advantage for I/O-bound applications like
Montage.
 The difference in runtime between the c1.xlarge
and abe.local experiments suggests that the
virtualization overhead for Montage is less than 8%.
4.2 Broadband
 The best overall runtime for Broadband was
achieved by using the abe.lustre resource type, and the
best EC2 runtime was achieved using the c1.xlarge
resource type. This is despite the fact that only 6 of the
8 cores on c1.xlarge and abe.lustre could be used due to
memory limitations.
 Unlike Montage the difference between running
Broadband on a relatively slow local disk (abe.local)
and running on the parallel file system (abe.lustre) is
not as significant. This is attributed to the lower I/O
requirements of Broadband.
 Broadband performs the worst on m1.small and
c1.medium, which also have the lowest amount
memory (1.7 GB). This is because m1.small has only

half a core, and c1.medium can only use one of its
two cores because of memory limitations.
 The difference between the runtime using
c1.xlarge and the runtime using abe.local was only
about 1%. This small difference suggests a relatively
low virtualization penalty for Broadband.
4.3 Epigenomics
 For Epigenomics the best EC2 runtime was
achieved using c1.xlarge and the best overall runtime
was achieved using abe.lustre. The primary factor
affecting the performance of Epigenome was the
availability of processor cores, with more cores
resulting in a lower runtime. This is expected given
that Epigenome is almost entirely CPU-bound.
 The difference between the abe.lustre and
abe.local runtimes was only about 2%, which is
consistent with the fact that Epigenome has relatively
low I/O and is therefore less affected by the parallel
file system.
 The difference between the abe.local and the
c1.xlarge runtimes suggest that the virtualization
overhead for this application is around 10%, which is
higher than both Montage and Broadband. This may
suggest that virtualization has a larger impact on
CPU-bound applications.

5. Cost Analysis
 In this section we analyze the cost of running
workflow applications in the cloud. We consider
three different cost categories: resource cost, storage
cost, and transfer cost. Resource cost includes
charges for the use of VM instances in EC2; storage
cost includes charges for keeping VM images in S3
and input data in EBS; and transfer cost includes
charges for moving input data, output data and log
files between the submit host and EC2.
5.1 Resource Cost
 Each of the five resource types Amazon offers is
charged at a different hourly rate: $0.10/hr for
m1.small, $0.40/hr for m1.large, $0.80/hr for
m1.xlarge, $0.20/hr for c1.medium, and $0.80/hr for
c1.xlarge. Usage is rounded up to the nearest hour, so
any partial hours are charged as full hours.
 Figure 4 shows the per-workflow resource cost
for the applications tested. Although it did not
perform the best in any of our experiments, the most
cost-effective instance type was c1.medium, which
had the lowest execution cost for all three
applications.

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

$3.00

Montage Broadband Epigenome
Application

m1.small
m1.large
m1.xlarge
c1.medium
c1.xlarge

Figure 4: Resource cost comparison

5.2 Storage Cost
 Storage cost consists of a) the cost to store VM
images in S3, and b) the cost of storing input data in
EBS. Both S3 and EBS use fixed monthly charges for
the storage of data, and variable usage charges for
accessing the data. The fixed charges are $0.15 per GB-
month for S3, and $0.10 per GB-month for EBS. The
variable charges are $0.01 per 1,000 PUT operations
and $0.01 per 10,000 GET operations for S3, and $0.10
per million I/O operations for EBS. We report the fixed
cost per month, and the total variable cost for all
experiments performed.
 We used a 32-bit and a 64-bit VM image for all of
the experiments in this paper. The 32-bit image was 773
MB and the 64-bit image was 729 MB for a total fixed
cost of $0.22 per month. In addition, there were 4616
GET operations and 2560 PUT operations for a total
variable cost of approximately $0.03.
 The fixed monthly cost of storing input data for the
three applications is shown in Table 3. In addition,
there were 3.18 million I/O operations for a total
variable cost of $0.30.

Table 3: Monthly storage cost
Application Volume Size Monthly Cost
Montage 5GB $0.66
Broadband 5GB $0.60
Epigenome 2GB $0.26

5.3 Transfer Cost
 In addition to resource and storage charges,
Amazon charges $0.10 per GB for transfer into, and
$0.17 per GB for transfer out of, the EC2 cloud. Tables
4 and 5 show the per-workflow transfer sizes and costs
for the three applications studied. Input is the amount of
input data to the workflow, output is the amount of
output data, and logs is the amount of logging data that
is recorded for workflow tasks and transferred back to
the submit host. The cost of the protocol used by
Condor to communicate between the submit host and
the workers is not included, but it is estimated to be less
than $0.01 per workflow.

Table 4: Per-workflow transfer sizes
Application Input Output Logs
Montage 4291 MB 7970 MB 40 MB
Broadband 4109 MB 159 MB 5.5 MB
Epigenome 1843 MB 299 MB 3.3 MB

Table 5: Per-workflow transfer costs
Application Input Output Logs Total
Montage $0.42 $1.32 < $0.01 $1.75
Broadband $0.40 $0.03 < $0.01 $0.43
Epigenome $0.18 $0.05 < $0.01 $0.23

6. Discussion
6.1 Performance
 Based on these experiments we believe the
performance of workflows on EC2 is reasonable
given the resources that can be provisioned. Although
the EC2 performance was not as good as the
performance on Abe, most of the resources provided
by EC2 are also less powerful. In the cases where the
resources are similar, the performance was found to
comparable. The EC2 c1.xlarge type, which is nearly
equivalent to abe.local, delivered performance that
was nearly the same as abe.local in our experiments.
 For I/O-intensive workflows like Montage, EC2
is at a significant disadvantage because of the lack of
high-performance parallel file systems. While such a
file system could conceivably be constructed from
the raw components available in EC2, the cost of
deploying such a system would be prohibitive. In
addition, because EC2 uses commodity networking
equipment it is unlikely that there would be a
significant advantage in shifting I/O from a local
partition to a parallel file system across the network,
because the bottleneck would simply shift from the
disk to the network interface. In order to compete
performance-wise with Abe for I/O-intensive
applications, Amazon would need to deploy both a
parallel file system and a high-speed interconnect.
 For memory-intensive applications like
Broadband, EC2 can achieve nearly the same
performance as Abe as long as there is more than 1
GB of memory per core. If there is less, then some
cores must sit idle to prevent the system from running
out of memory or swapping. This is not strictly an
EC2 problem, the same issue affects Abe as well.
 For CPU-intensive applications like Epigenome,
EC2 can deliver comparable performance given
equivalent resources. The virtualization overhead
does not seem to be a significant barrier to
performance for such applications. In fact, the
virtualization overhead measured for all application
less than 10%. This is consistent with previous
studies that show similar virtualization overheads
[5,16,36]. As such, virtualization does not seem, by
itself, to be a significant performance problem for

clouds. As virtualization technologies improve it is
likely that what little overhead there is will be further
reduced or eliminated.
6.2 Cost
 The first thing to consider when provisioning
resources on EC2 is the tradeoff between performance
and cost. In general, EC2 resources obey the aphorism
“you get what you pay for”—resources that cost more
perform better than resources that cost less. For the
applications tested, c1.medium was the most cost-
effective resource type even though it did not have the
lowest hourly rate, because the type with the lowest rate
(m1.small) performed so badly.
 Another important thing to consider when using
EC2 is the tradeoff between storage cost and transfer
cost. Users have the option of either a) transferring
input data for each workflow separately, or b)
transferring input data once, storing it in the cloud, and
using the stored data for multiple workflow runs. The
choice of which approach to employ will depend on
how many times the data will be used, how long the
data will be stored, and how frequently the data will be
accessed. In general, storage is more cost-effective for
input data that is reused often and accessed frequently,
and transfer is more cost-effective if data will be used
only once. For the applications tested in this paper, the
monthly cost to store input data is only slightly more
than the cost to transfer it once. Therefore, for these
applications, it is usually more cost-effective to store
the input data rather than transfer the data for each
workflow.
 Although the cost of transferring input data can be
easily amortized by storing it in the cloud, the cost of
transferring output data may be more difficult to
reduce. For many applications the output data is much
smaller than the input data, so the cost of transferring it
out may not be significant. This is the case for
Broadband and Epigenome, for example. For other
applications the large size of output data may be cost-
prohibitive. In Montage, for example, the output is
actually larger than the input and costs nearly as much
to transfer as it does to compute. For these applications
it may be possible to leave the output in the cloud and
perform additional analyses there rather than to transfer
it back to the submit host.
 In [8] the cost of running 1-, 2-, and 4-degree
Montage workflows on EC2 was studied via simulation.
That paper found the lowest total cost of a 1-degree
workflow to be $0.60, a 2-degree to be $2.25, and a 4-
degree to be $9.00. In comparison, we found the total
cost of an 8-degree workflow, which is 4 times larger
than a 4-degree workflow, to be approximately $1.25 if
data is stored for an entire month, and $2.35 if data is
transferred. This difference is primarily due to an
underestimate of the performance of EC2 that was used

in the simulation, which produced much longer
simulated runtimes.
 Finally, the total cost of all the experiments
presented in this paper was $149.55. That includes all
charges related to learning to use EC2, creating VM
images, and running test and experimental
workflows.

7. Conclusion
 In this paper we examined the performance and
cost of running scientific workflow applications in
the cloud using Amazon’s EC2 as a model. We ran
several workflow applications representing diverse
application domains and resource requirements on
EC2 and compared the performance to NCSA’s Abe
cluster. We found that although the performance of
EC2 was not equivalent to Abe in most cases, it was
reasonable given the resources available. The primary
advantages of Abe were found to be the availability
of a high-speed interconnect, and a parallel file
system, which significantly improved the
performance of the I/O-intensive application.
Factoring out these advantages by running additional
Abe tests using the local disk shows that, given
equivalent resources, EC2 is capable of performance
close to that of Abe. All other things being equal the
only difference was a small virtualization overhead in
EC2, which was measured to be between 1% and
10% for the applications tested.
 We also analyzed the cost of running workflows
on EC2. We found that the primary cost was in
acquiring resources to execute workflow tasks, and
that storage costs were relatively small in
comparison. The cost of data transfers, although
relatively high, can be effectively reduced by storing
data in the cloud rather than transferring it for each
workflow. In addition, we found the cost of running
workflows in the cloud to be much less, and the
performance to be much better, than suggested by
previous research.
 These results indicate that clouds are a viable
alternative for running scientific workflow
applications, but unless cloud providers begin
offering high-speed networks and parallel file
systems they are unlikely to compete with existing
HPC systems in terms of performance.
 In this paper we focused on the case where only
a single node is used to run a workflow. In the future
we plan to extend this work to study the performance
and cost of clouds when multiple nodes are used.
That study will include an analysis of the various
ways in which data can be communicated between
workflow tasks in a cloud.

Acknowledgements
 This work was supported by the National Science
Foundation under the SciFlow (CCF-0725332) grant.
This research made use of Montage, funded by the
National Aeronautics and Space Administration's Earth
Science Technology Office, Computation Technologies
Project, under Cooperative Agreement Number NCC5-
626 between NASA and the California Institute of
Technology.

References
[1] Amazon.com, “Elastic Block Store (EBS)”;

http://aws.amazon.com/ebs.
[2] Amazon.com, “Elastic Compute Cloud (EC2)”;

http://aws.amazon.com/ec2.
[3] Amazon.com, “Simple Storage Service (S3)”;

http://aws.amazon.com/s3.
[4] M. Armbrust et al., Above the Clouds: A Berkeley View

of Cloud Computing, white paper, UC Berkeley, 2009.
[5] P. Barham et al., “Xen and the Art of Virtualization,”

19th ACM Symposium on Operating Systems
Principles (SOSP'03), 2003.

[6] CondorTeam, “DAGMan”;
http://cs.wisc.edu/condor/dagman.

[7] “Corral”; http://pegasus.isi.edu/glidein/latest.
[8] E. Deelman et al., “The Cost of Doing Science on the

Cloud: The Montage Example,” ACM/IEEE
conference on Supercomputing (SC'08), 2008.

[9] E. Deelman et al., “Pegasus: A framework for mapping
complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, 2005, pp.
219-237.

[10] C. Evangelinos et al., “Cloud Computing for Parallel
Scientific HPC Applications: Feasibility of Running
Coupled Atmosphere-Ocean Climate Models on
Amazon's EC2,” Cloud Computing and Its
Applications (CCA 2008), 2008.

[11] R.J. Figueiredo et al., “A case for grid computing on
virtual machines,” 23rd International Conference on
Distributed Computing Systems, 2003, pp. 550-559.

[12] “FlexiScale”; http://www.flexiscale.com.
[13] I. Foster et al., “Cloud Computing and Grid Computing

360-Degree Compared,” Grid Computing
Environments Workshop (GCE '08), 2008.

[14] I. Foster, “Globus Toolkit Version 4: Software for
Service-Oriented Systems,” 2006.

[15] J. Frey et al., “Condor-G: A Computation Management
Agent for Multi-Institutional Grids,” Cluster
Computing, vol. 5, 2002, pp. 237-246.

[16] L. Gilbert et al., “Performance Implications of
Virtualization and Hyper-Threading on High Energy
Physics Applications in a Grid Environment,” 19th
IEEE International Parallel and Distributed
Processing Symposium (IPDPS'05), 2005.

[17] “GoGrid”; http://www.gogrid.com.
[18] C. Hoffa et al., “On the Use of Cloud Computing for

Scientific Workflows,” 3rd International Workshop on

Scientific Workflows and Business Workflow
Standards in e-Science (SWBES '08), 2008.

[19] W. Huang et al., “A Case for High Performance
Computing with Virtual Machines,” 20th
International Conference on Supercomputing, 2006.

[20] Hyperic, Inc., “CloudStatus”;
http://www.cloudstatus.com.

[21] D.S. Katz et al., “A comparison of two methods for
building astronomical image mosaics on a grid,”
International Conference on Parallel Processing
(ICPP'05), 2005, pp. 85-94.

[22] H. Li et al., “Mapping short DNA sequencing reads
and calling variants using mapping quality scores,”
Genome Research, vol. 18, 2008, pp. 1851-1858.

[23] M.J. Litzkow et al., “Condor: A Hunter of Idle
Workstations,” 8th International Conference on
Distributed Computing Systems, 1988, pp. 104-111.

[24] J. Napper et al., “Can Cloud Computing Reach the
Top500?,” Combined Workshops on
UnConventional high performance computing
workshop plus memory access, 2009.

[25] National Center for Supercomputing Applications
(NCSA), “Intel 64 Cluster Abe”;
http://www.ncsa.illinois.edu/UserInfo/Resources/Ha
rdware/Intel64Cluster.

[26] “Nimbus”; http://workspace.globus.org.
[27] D. Nurmi et al., “The Eucalyptus Open-source

Cloud-computing System,” IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid '09), 2009.

[28] “OpenNebula”; http://www.opennebula.org.
[29] M.R. Palankar et al., “Amazon S3 for science grids:

a viable solution?,” International workshop on
Data-aware distributed computing, 2008.

[30] Southern California Earthquake Center,
“Community Modeling Environment (CME)”;
http://www.scec.org/cme.

[31] “USC Epigenome Center”;
http://epigenome.usc.edu.

[32] E. Walker, “Benchmarking Amazon EC2 for High-
Performance Scientific Computing,” Login, vol. 33,
pp. 18-23.

[33] P. Watson et al., “Cloud Computing for e-Science
with CARMEN,” IBERGRID 2008, 2008.

[34] L. Youseff et al., “Toward a Unified Ontology of
Cloud Computing,” Grid Computing Environments
Workshop (GCE '08), 2008.

[35] L. Youseff et al., “The impact of paravirtualized
memory hierarchy on linear algebra computational
kernels and software,” 17th international symposium
on High performance distributed computing, 2008.

[36] L. Youseff et al., “Paravirtualization for HPC
Systems,” Workshop on Xen in High-Performance
Cluster and Grid Computing, 2006.

[37] J. Yu et al., “A Taxonomy of Workflow
Management Systems for Grid Computing,” Journal
of Grid Computing, vol. 3, 2005.

	1. Introduction
	2. Applications
	3. Execution Environment
	3.1 Resources
	3.2 Software
	3.3 Storage

	4. Performance Comparison
	4.1 Montage
	4.2 Broadband
	4.3 Epigenomics

	5. Cost Analysis
	5.1 Resource Cost
	5.2 Storage Cost
	5.3 Transfer Cost

	6. Discussion
	6.1 Performance
	6.2 Cost

	7. Conclusion
	Acknowledgements
	References

