
ASTRONOMICAL IMAGE MOSAICKING ON A GRID: INITIAL

EXPERIENCES∗

DANIEL S. KATZ†, NATHANIEL ANAGNOSTOU‡, G. BRUCE BERRIMAN‡,
EWA DEELMAN§, JOHN GOOD‡, JOSEPH C. JACOB†,

CARL KESSELMAN§, ANASTASIA LAITY‡, THOMAS A. PRINCE¶,

GURMEET SINGH§, MEI-HUI SU§, ROY WILLIAMS‖

Abstract. This chapter discusses some grid experiences in solving the problem of generat-
ing large astronomical image mosaics by composing multiple small images, from the team that has
developed Montage (http://montage.ipac.caltech.edu/). The problem of generating these mosaics
is complex in that individual images must be projected into a common coordinate space, overlaps
between images calculated, the images processed so that the backgrounds match, and images com-
posed while using a variety of techniques to handle the presence of multiple pixels in the same output
space. To accomplish these tasks, a suite of software tools called Montage has been developed. The
modules in this suite can be run on a single processor computer using a simple shell script, and
can additionally be run using a combination of parallel approaches. These include running MPI
versions of some modules, and using standard grid tools. In the latter case, processing workflows are
automatically generated, and appropriate data sources are located and transferred to a variety of
parallel processing environments for execution. As a result, it is now possible to generate large-scale
mosaics on-demand in timescales that support iterative, scientific exploration. In this chapter, we
describe Montage, how it was modified to execute in the grid environment, the tools that were used
to support its execution, as well as performance results.

Key words. grid applications, astronomy, mosaics

1. Introduction. Astronomy has a rich heritage of discovery from image data
collections that cover essentially the full range of the electromagnetic spectrum. Image
collections in one frequency range have often been studied in isolation from those
in other frequency ranges. This is a consequence of the diverse properties of the
data collections themselves; images are delivered in different coordinate systems, map
projections, spatial samplings and image sizes, and the pixels themselves are rarely co-
registered on the sky. Moreover, the spatial extent of many astronomically important
structures, such as clusters of galaxies and star formation regions, is substantially
greater than those of individual images.

Astronomy thus has a need for image mosaic software that delivers science-grade
mosaics from multiple image data sets as if they were single images with a common
coordinate system, map projection etc. That is, the software must preserve the astro-
metric and photometric integrity of the original data, and rectify background emission

∗Montage is supported by the NASA Earth Sciences Technology Office Computing Technologies
program, under Cooperative Agreement Notice NCC 5-6261. Pegasus is supported by NSF under
grants ITR-0086044 (GriPhyN) and ITR AST0122449 (NVO). Part of this research was carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute
of Technology.

†Parallel Applications Technologies Group, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA 91109

‡Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA
91125

§USC Information Sciences Institute, Marina del Rey, CA 90292
¶Astronomy Department, California Institute of Technology, Pasadena, CA 91125
‖Center for Advanced Computing Research, California Institute of Technology, Pasadena, CA

91125

1

2 Katz, D.S., et. al

from the sky or from the instrument using physically based models. The Montage
project [1] provides the astronomer with the tools needed to build mosaics in Flexible
Image Transport System (FITS) [2] format, including support for all common astro-
nomical coordinate systems, all World Coordinate System (WCS) map projections
[3], arbitrary image sizes (including full-sky images) and rotations, and user-specified
spatial sampling.

Montage has been designed as a scalable, portable tool kit that can be used
by astronomers on their desktops for science analysis, integrated into project and
mission pipelines, or run on computing grids to support large-scale product generation,
mission planning and quality assurance. It will be deployed operationally on the
Distributed Terascale Facility (TeraGrid) [4] and be accessible to astronomers through
existing astronomy portals. In its initial deployment, Montage will serve images from
the 2 Micron All Sky Survey (2MASS) [5], Digital Palomar Observatory Sky Survey
(DPOSS) [6] and Sloan Digital Sky Survey (SDSS) [7], but will process all WCS-
compliant images. It can therefore be considered an enabling technology, in that the
mosaics it generates will widen avenues of astronomical research, and be a valuable
tool in mission planning and quality assurance, including:

• Deep source detection by combining data over multiple wavelengths
• Predictions of source counts and wavelength extrapolations of fluxes
• Spectrophotometry of each pixel in an image
• Position optimization with wavelength
• The wavelength dependent structure of extended sources
• Image differencing to detect faint features
• Discovering new classes of objects

Two previously published papers provide much background for Montage. The first
described Montage as part of the architecture of the National Virtual Observatory [8],
and the second described some of the initial grid results of Montage [9]. This chapter
covers much of the material in those papers, and describes some potential solutions
to the problems in the initial grid implementations.

2. Montage architecture.

2.1. Processing steps. Montage employs the following four steps to compute
a mosaic:

• Re-projection of input images to a common spatial scale, coordinate system,
and WCS projection

• Modeling of background radiation in images to achieve common flux scales
and background levels by minimizing the inter-image differences

• Rectification of images to a common flux scale and background level
• Co-addition of re-projected, background-corrected images into a final mosaic

Montage accomplishes these computing tasks in independent modules, written in
ANSI C for portability. This toolkit approach controls testing and maintenance costs,
and provides considerable flexibility to users. They can, for example, use Montage
simply to re-project sets of images and co-register them on the sky, or implement a
custom background removal algorithm without impact on the other steps, or define a
specific processing flow through custom scripts.

Astronomical Image Mosaicking on a Grid: Initial Experiences 3

Table 1

The components of Montage version 1.7.

Component Description

mImgtbl Extracts the FITS header geometry information from a set of files and creates
from it an ASCII image metadata table used by several of the other programs.

mProject Reprojects a single image to the scale defined in a pseudo-FITS header template
file (an ASCII file with the output image header lines, but not padded to 80
characters and with new lines at the end of each line). Actually produces a
pair of images: the reprojected image and an “area” image consisting of the
fraction of input pixel sky area that went into each output pixel.

mProjExec A simple executive that runs mProject for each image in an image metadata
table.

mAdd Co-adds the reprojected images using the same FITS header template and
working from the same mImgtbl list.

mOverlaps Analyzes an image metadata table to determine a list of overlapping images.
mDiff Performs a simple image difference between a single pair of overlapping images.

This is meant for use on reprojected images where the pixels are already lined
up exactly.

mDiffExec Runs mDiff on all the pairs identified by mOverlaps.
mFitplane Fits a plane (excluding outlier pixels) to an image. Meant for use on the

difference images generated above.
mFitExec Runs mFitplane on all the mOverlaps pairs. Creates a table of image-to-image

difference parameters.
mConcatFit Concatenates the output of multiple mFitplane runs into a single file for use

by mBgModel. It is only used when mFitplane is called directly by the user,
rather than through mFitExec. (Note: mConcatFit was not in Montage version
1.7, but was added for grid processing very soon thereafter.)

mBgModel Modeling/fitting program which uses the image-to-image difference parameter
table to interactively determine a set of corrections to apply to each image to
achieve a “best” global fit.

mBackground Removes a background from a single image (planar has proven to be adequate
for the images we have dealt with).

mBgExec Runs mBackground on all the images in the metadata table.

2.2. Sequential processing. The first public release of Montage [10], version
1.7 (October 2003), supports serial processing of images, with processing of the four
steps described above controlled through a set of simple executives. It is written in
ANSI C for portability, and does not use shared memory. It has only been rigorously
tested on machines running Red Hat Linux, but has been successfully run under
Solaris and Mac OS X, among others. Figure 1 shows the high level design for the
original release of Montage, which is described in more detail in Table 1.

Montage version 1.7 emphasized accuracy over speed. In order to support the
broadest range of applications, the basic Montage reprojection and image flux redis-
tribution algorithm works on the surface of the celestial sphere. All pixel vertices
from both input and output images are projected onto this sphere; if necessary, a
coordinate system transform is applied to the input pixel vertices to put their sky
coordinates in the same frame as the output. Then, for overlapping pixels, the area
of overlap (in steradians) is determined. This overlap, as a fraction of the input pixel
area, is used to redistribute the input pixel “energy” to the output pixels.

In this way, total energy is conserved for those input pixels which do not extend
beyond the bounds of the output image area. Even when a pixel has “undefined”
vertices, such as at the boundaries of an Aitoff all-sky projection, the same process
can be applied by determining an edge pixel’s outline on the sky, described in the
general case as a spherical polygon. The co-addition engine then creates the final

4 Katz, D.S., et. al

Fig. 1. The high-level design of Montage. The figure shows the background rectification engine,
and the reprojection and co-addition engines. The components of each engine are shown.

mosaic by reading the reprojected images from memory and weighting each pixel’s
flux by total input area.

This approach is completely general and preserves the fidelity of the input images.
A comparison of sources extracted from the mosaics with the SExtractor source ex-
traction [11] program shows that, in general, Montage preserves photometric accuracy
to better than 0.1% and astrometric accuracy better than 0.1 of a pixel, for the 10

Astronomical Image Mosaicking on a Grid: Initial Experiences 5

WCS projections subjected to rigorous testing (using 2MASS images) [12]. Generality
in reprojection is achieved at the expense of processing speed. For example, reprojec-
tion of a 512 × 1024 pixel 2MASS image takes 100 seconds on a machine equipped
with a 2.26-GHz Intel processor and 1 GB memory, running Red Hat Linux 8.0.

As an example, consider a 1-degree square mosaic of the Galactic Center as mea-
sured by 2MASS. Figure 2a shows an unrectified mosaic. The striped appearance
arises because different scan paths were observed at different times and through dif-
ferent atmospheric path lengths. Figure 2b shows an example mosaic generated by
the Montage prototype code: the images in Figure 2a have been background rectified
to generate a seamless mosaic in Figure 2b. The image is not, however, of science
grade and should be considered as a proof-of-concept.

Fig. 2. A 1 degree square mosaic of the Galactic Center, constructed by Montage from images
released by the 2MASS project. In frame (a), the images are not rectified for background emission,
and the variation of background radiation at different times and air masses is apparent in the stripes.
Frame (b) shows the same region after applying a background rectification algorithm as described in
the text. The mosaic is a demonstration product generated with a prototype code; it is not a science
grade image and it is not endorsed by 2MASS.

Two additional drawbacks inherent in this distribution of the software are that
the maximum image mosaic size is limited by the available computer memory, and
co-addition of flux in the reprojected pixels only supports weighting by area coverage.

The Montage team has taken advantage of the software’s modular design to ad-
dress these limitations in a new distribution, version 2.2, that was released in Septem-
ber 2004. Co-addition was redesigned to overcome the limitations of memory and
weighting just described, and the use of a dedicated module allowed the redesign to
proceed without impact on the design of performance improvements for reprojection.
These performance improvements have taken two forms:

• development of custom, fast reprojection algorithms applicable to commonly
used astronomical projections; these algorithms bypass projection of pixels
onto a sphere, and transform input pixel flux directly into output pixel space
[9], and

• exploitation of the parallelization inherent in the design; many of the steps
needed to compute a mosaic can be performed in parallel.

6 Katz, D.S., et. al

2.3. Improved co-addition. The limitations of the available memory on the
processing machine were overcome by simply reading the reprojected images one line
at a time. Assuming that a single row of the output file does not fill the memory,
the only remaining limitation on file size is that imposed by the file system. Images
of up to 6 GB have been built with the new software. The algorithm has also been
developed further to support quite general co-addition methods. For each output line,
mAdd determines which input files will be contributing pixel values, and opens only
those files. Each contributing pixel value is read from the flux and area coverage files,
and the value of each of these pixels is stored in an array until all contributing pixels
have been read for the corresponding output row. This array constitutes a “stack”
of input pixel values; a corresponding stack of area coverage values is also preserved.
The contents of the output row are then calculated one output pixel (i.e., one input
stack) at a time, by averaging the flux values from the stack. Different algorithms
to perform this average can be trivially inserted at this point in the program. The
greater flexibility of the new software comes at the modest expense of 30% in speed.

Montage currently supports mean and median co-addition, with or without weight-
ing by area. The default is the mean algorithm, which accumulates flux values con-
tributing to each output pixel, and then scales them by the total area coverage for
that pixel. The median algorithm ignores any pixels whose area coverage falls below
a specific threshold, and then calculates the median flux value from the remainder
of the stack. This median input pixel is scaled by its corresponding area coverage,
and written as the output pixel. If there are no area files, then the algorithm gives
equal weight to all pixels. This is valuable for science data sets where the images are
already projected into the same pixel space (e.g., MSX). An obvious extension of the
algorithm is to support outlier rejection, and this is planned for a future release.

2.4. Fast reprojection. In its general form, the Montage reprojection algo-
rithm transforms pixel coordinates in the input image to coordinates on the sky and
then transforms that location to output image pixel space. Under certain circum-
stances, this can be replaced by a much faster algorithm which uses a set of linear
equations (though not a linear transform) to transform directly from input pixel co-
ordinates to output pixel coordinates. This alternate approach is limited to cases
where both the input and output projections are of “tangent plane” type (gnomonic,
orthographic, etc.), but since these projections are by far the most common, it is
appropriate to treat them as a special case.

This “plane-to-plane” approach is based on a library developed at the Spitzer Sci-
ence Center [13]. When both images are tangent plane, the geometry of the system
can be viewed as in Figure 3, where a pair of gnomonic projection planes intersect
the coordinate sphere. A single line connects the center of the sphere, the projected
point on the first plane and the projected point on the second plane. This geometric
relationship results in transformation equations between the two planar coordinate
systems that require no trigonometry or extended polynomial terms. As a conse-
quence, the transform is a factor of thirty or more faster than using the normal
spherical projection formulae.

An added benefit to the plane-to-plane approach is that the computation of pixel
overlap is much easier, involving only clipping constraints of the projected input pixel
polygon in the output pixel space.

This approach excludes some commonly-used projections such as “Cartesian” and
“zenithal equidistant,” and is essentially limited to small areas of few square degrees.
Processing of all-sky images, as is almost always the case with projections such as

Astronomical Image Mosaicking on a Grid: Initial Experiences 7

Fig. 3. The principle of plane-to-plane reprojection.

Aitoff, generally requires the slower plane-to-sky-to-plane approach.

There is, however, a technique that can be used for images of high resolution and
relatively small extent (up to a few degrees on the sky). Rather than use the given
image projection, we can often approximate it with a very high degree of accuracy
with a “distorted” Gnomonic projection. In this case, the pixel locations are “dis-
torted” by small distances relative to the plane used in the image projection formulae.
A distorted space is one in which the pixel locations are slightly offset from the lo-
cations on the plane used by the projection formulae, as happens when detectors are
slightly misshapen, for instance. This distortion is modeled by pixel-space polynomial
correction terms which are stored as parameters in the image’s FITS header.

While this approach was developed to deal with physical distortions caused by
telescope and instrumental effects, it is applicable to Montage in augmenting the
plane-to-plane reprojection. Over a small, well-behaved region, most projections can
be approximated by a Gnomonic (TAN) projection with small distortions. For in-
stance, in terms of how pixel coordinates map to sky coordinates, a two-degree “Carte-
sian” (CAR) projection is identical to a TAN projection with a fourth-order distortion
term to within about a percent of a pixel width. Figure 4 shows this in exaggerated
form for clarity, with the arrows showing the sense of the distortion.

3. Grid-enabled Montage.

3.1. Single-processor performance on benchmark problem. In order to
examine grid-enabling Montage, we choose a sample problem that could be computed
on a single processor in a reasonable time to use as a benchmark. The results in this
section involve this benchmark, unless otherwise stated. The benchmark problem is
generating a mosaic of 2MASS data from a 6 degree × 6 degree region around M16.
Construction of this mosaic requires 1254 2MASS images as input, each having about
0.5 Megapixels, for a total of about 657 Megapixels input (or about 5 GB with 64
bits per pixel double precision floating point data). The output is a 3.7 GB FITS file

8 Katz, D.S., et. al

Fig. 4. Representation of a WCS projection as a distorted Gnomonic (TAN) projection, exag-
gerated for clarity. The arrows indicate the sense of the distortions.

with a 21600 pixel × 21600 pixel data segment, and 64 bits per pixel double precision
floating point data. Note that the output data size is a little smaller than the input
data size because there is some overlap between neighboring input images. For the
timing reported in this section, we assume that the input data has been pre-staged
to a local disk on the compute cluster.

Table 2 shows timings from running this problem on a single processor of the
“Phase 2” TeraGrid cluster at the National Center for Supercomputing Applications
(NCSA), University of Illinois at Urbana-Champaign. This cluster consists of 887
nodes, each with dual Itanium-2 processors and each having at least 4 GB of memory.
256 of the nodes have 1.3 GHz processors, and the other 631 nodes have 1.5 GHz pro-
cessors. The timing tests reported in this chapter used the faster 1.5 GHz processors.
The network interconnect between nodes is Myricom’s Myrinet and the operating
system is SuSE Linux. Disk I/O is to a 24 TB General Parallel File System (GPFS).
Jobs are scheduled on the system using Portable Batch System (PBS) and the queue
wait time is not included in the execution times since that is heavily dependent on
machine load from other users.

Table 2 also shows the processing steps for the benchmark problem through the
ordering of the rows of the table. Each step must be completed before the next
step (with the slight exception that the mImgtbl steps can be excluded from the
processing stream). However, each of the executive modules (mProjExec, mDiffExec,
mFitExec and mBgExec) calls additional sub-modules (as described in Table 1), and
the execution of each sub-module is independent of the others, as long as all the
sub-modules complete before the next module starts. This is shown in Figure 5.
These sub-modules are the initial cases where parallelism is found in Montage. This
parallelization is the most basic, as the sub-processes are started by the executive, but
do not communicate with either the executive or each other as they run. Additionally,
because mAdd builds the output mosaic by rows, it can also be parallelized, though
it is slightly more complicated than the executives and sub-modules, because the
parallel components of mAdd need to work together to write a single file. In the
following sections of this paper, two different methods of taking advantage of this

Astronomical Image Mosaicking on a Grid: Initial Experiences 9

Table 2

Execution times (minutes) for a benchmark 2MASS mosaic covering 6 degrees × 6 degrees
centered at M16, computed with Montage (version 2.1) on a single 1.5 GHz node of the NCSA
TeraGrid cluster.

Component Run Time (minutes)

mImgtbl 0.7
mProjExec (orig.) 2408.1
mProjExec (fast) 142.3
mImgtbl 1.1
mOverlaps 0.05
mDiffExec 30.0
mFitExec 20.2
mBgModel 1.1
mBgExec 11.3
mImgtbl 1.05
mAdd 73.0

Total (w/ orig. mProject) 2546.6
Total (w/ fast mProject) 280.8

parallelization on a grid are discussed.

3.2. Data access. A large variety and amount of astronomical data are now
available in archives around the world. In order to standardize and encourage use
of these data, the International Virtual Observatory Alliance (IVOA) [14] has been
formed by a number of smaller organizations with a set of common interests. The
IVOA has proposed a number of draft standards, ranging from a table format called
VOTable [15] to a method for retrieving data called the Simple Image Access Protocol
(SIAP) [16]. These standards become important in the context of distributed com-
puting, where the data usually needs to be brought to the processing in an automated
manner.

For example, if one wants to obtain data needed to build a mosaic of SDSS [7]
data for band z, in a circular region around (RA, DEC) (39.9995925, 0.0000885), with
radius 0.99554875, one can use the following URL:

http://skyserver.sdss.org/vo/dr2siap/SIAP.asmx/getSiapInfo?

bandpass=z&POS=39.9995925,8.85e-05&SIZE=0.99554875&FORMAT=image/fits

This returns a VOTable containing a list of files (URLs) that can be accessed. One
can then parse this table, and actually retrieve the files. Where this is done depends
on the context of the mosaicking job to be run. Using the single processor version of
Montage, one would likely do this on the machine on which Montage was to be run.
Using the grid-enabled versions of Montage that are described in the next sections, this
data retrieval would be done in some manner to make the files local to the processing.
This will be discussed in the next two sections: §3.3 and §3.4.

Alternatively, a scientist may wish to work with data that is on her desktop. In
this case, if using a grid-enabled version of Montage, the user needs a mechanism for
getting the data to the machine on which the processing (or at least the first parts of
it) will be done. This will also be discussed in §3.3 and §3.4.

3.3. Grid-enabling Montage through use of MPI parallelization. The
first method of running Montage on a grid is to use grid-accessible clusters, such as the
TeraGrid. This is really very similar to traditional, non-grid parallelization. By use

10 Katz, D.S., et. al

Fig. 5. Example workflow for Montage, for a case where three images are to be made into a mo-
saic. The reprojection, calculation of the inter-image differences and application of the background
rectification can all be performed in parallel.

of MPI (the Message Passing Interface [17]), the executives (mProjExec, mDiffExec,
mFitExec and mBgExec) and mAdd are run on multiple processors. The Atlasmaker
[18] project previously developed an MPI version of mProject, but was not closely
coupled to the released Montage code, and therefore was hard to maintain. In this
case, the MPI versions and single-processor versions of modules are generated from a
single set of source code, by use of preprocessing directives.

3.3.1. Methodology. The structure of the executives are similar to each other,
in that each has some initialization that involves determining a list of files on which a
sub-module will be run, a loop in which the sub-module is actually called for each file,
and some finalization work that includes reporting on the results of the sub-module
runs. Additionally, two of the executives write to a log file after running each sub-
module. The executives, therefore, are parallelized very simply, with all processes
of a given executive being identical to all the other processes of that executive. All
the initialization is duplicated by all processes. A line is added at the start of the
main loop, so that each process only calls the sub-module if the remainder of the
loop count divided by the number of processes equals the MPI rank. All processes
then participate in global sums to find the total statistics of how many sub-modules
succeeded, failed, etc., as each process keeps track of its own statistics. After the
global sums, only the process with rank 0 prints the global statistics. For the two
executives that write to a log file, the order of the entries in the log file is unimportant.

Astronomical Image Mosaicking on a Grid: Initial Experiences 11

In these cases, each process writes to a unique temporary log file. Then, after the
global sums, the process with rank 0 runs an additional loop, where it reads lines from
each process’s log file, then writes them to a global log file, deleting each process’s
temporary log file when done.

As was discussed in §2.3, mAdd writes to the output mosaic one line at a time,
reading from its input files as needed. The sequential mAdd writes the FITS header
information into the output file before starting the loop on output lines. In the
parallel mAdd, only the process with rank 0 writes the FITS header information, then
it closes the file. Now, each process can carefully seek and write to the correct part
of the output file, without danger of overwriting another process’s work. While the
executives were written to divide the main loop operations in a round-robin fashion,
it makes more sense to parallelize the main mAdd loop by blocks, since it is likely that
a given row of the output file will depend on the same input files as the previous row,
and this can reduce the amount of input I/O for a given process.

A set of system tests are available from the Montage web site. These tests, which
consist of shell scripts that call the various Montage modules in series, were designed
for the single-processor version of Montage. The MPI version of Montage is run
similarly, by changing the appropriate lines of the shell script, for example, from:

mAdd arg1 arg2 ...

to:

mpirun -np N mAddMPI arg1 arg2 ...

These are the only changes that are needed. Notice that when this is run on a queuing
system, some number of nodes will be reserved for the job. Some parts of the job,
such as mImgtbl, will only use one processor, and other parts, such as mAddMPI, will
use all the processors. Overall, most of the processors are in use most of the time.
There is a small bit of overhead here in launching multiple MPI jobs on the same set
of nodes. One might change the shell script into a parallel program, perhaps written
in C or in python, to avoid this overhead, but this has not yet been done for Montage.

A reasonable question to ask is how this approach differs from what might be done
on a cluster that is not part of a grid. The short answer to this somewhat rhetorical
question is that the processing part of this approach is not different. In fact, one
might choose to run the MPI version of Montage on a local cluster by logging in to
the local cluster, transferring the input data to that machine, submitting a job that
runs the shell script to the queuing mechanism, and finally, after the job has run,
retrieving the output mosaic.

In a grid environment, the Globus Toolkit (GTK) [19] could be used for both
secure data communication and remote job execution. GTK uses the Grid Security
Infrastructure (GSI) for secure communication between grid elements and to allow
“single sign-on” access to a collection of grid resources. With GSI, a user of a grid
may have an X.509 certificate, issued by a trusted certificate authority, that grants
access to the various resources. Authentication can then be done with Globus by
requesting a proxy certificate that permits access to all the resources for a finite
period.

To run the mosaicking code on a cluster that is part of the grid, the staging of the
input data to the remote computer performing the computations could either be done

12 Katz, D.S., et. al

Table 3

Execution times (wallclock time in minutes) for a benchmark 2MASS mosaic, covering 6 degrees
× 6 degrees centered at M16, computed with Montage (version 2.1) on various numbers of 1.5 GHz
nodes of the NCSA TeraGrid cluster. Parallelization is done with MPI.

Number of Nodes (1 processor per node)
Component 1 2 4 8 16 32 64 128

mImgtbl 0.7 1.05 1.05 1.2 1.4 1.3 1.2 0.7
mProjExec (orig., MPI) 2408.1 1228.1 620.0 302.4 153.6 75.8 39.6 21.9
mProjExec (fast, MPI) 142.3 68.0 34.1 17.2 8.8 4.8 3.05 2.3
mImgtbl 1.1 1.0 0.9 1.3 1.1 1.2 1.1 1.1
mOverlaps 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
mDiffExec (MPI) 30.0 16.9 9.5 9.5 9.2 9.4 9.5 8.8
mFitExec (MPI) 20.2 10.6 5.3 2.9 1.7 1.1 1.1 1.2
mBgModel 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
mBgExec (MPI) 11.3 6.0 3.8 2.6 2.3 2.4 2.6 3.0
mImgtbl 1.05 0.9 0.9 1.1 1.1 1.2 1.1 1.4
mAdd (MPI) 73.0 44.6 36.4 28.7 17.2 14.8 15.8 12.8

Total (w/ orig. mProject) 2546.6 1310.3 679.0 350.9 188.8 108.3 73.4 52.0
Total (w/ fast mProject) 280.8 150.2 93.1 65.7 44.0 37.3 36.9 32.4

by running the appropriate SIAP service and fetching the data files from the returned
list of URLs on the remote cluster or by using the GridFTP [20] implementation
included in GTK, if the data to be mosaicked was on a local desktop. GridFTP is a
data transfer protocol that is optimized for high-performance, secure communication
over high-bandwidth networks. The mosaic computations can be launched using the
remote job submission provided by globusrun. Finally, transfer of the output mosaic
back to a local disk could be done using GridFTP.

The grid paradigm just described requires an active proxy certificate during the
data communication and remote job execution. This authentication is straightforward
when a user is typing at a command-line prompt. However, if a user is interacting
with the grid through a web portal, the web server then has to authenticate the user
on the grid. In this case, a repository of grid credentials called MyProxy [21] can be
used to store a user’s grid certifications for easy access by the web portal. The portal
then acts on the user’s behalf to submit commands for use of grid resources. The
portal can notify the user of job completion via email notification, or provide a more
sophisticated status reporting mechanism if more feedback is required.

3.3.2. Timing results. The timing results of the MPI version of Montage are
compiled in Table 3, which shows wall clock times in minutes for each Montage mod-
ule run on the specified number of nodes (with one processor per node) on the NCSA
TeraGrid cluster. The end-to-end runs of Montage involved running the modules in
the order shown in the table. The modules that are parallelized are labeled as MPI;
all other modules are serial implementations. Note that timings are shown for two
versions of the mProject module: one that calls the slower original implementation
and one that calls the fast implementation. Total times are shown for both implemen-
tations, with only the one specified implementation (original or fast) called in each
run. For clarity, the execution times for the parallel modules on the different number
of cluster nodes are plotted in Figure 6 for the original mProject implementation
and in Figure 7 for the fast mProject implementation. Figure 8 shows a plot of the
speedups that were achieved for each size of cluster partition.

MPI parallelization reducing the one processor time of 2546.6 minutes down to
52.0 minutes on 128 nodes, for a parallelization speedup of 49.0. Note that with the

Astronomical Image Mosaicking on a Grid: Initial Experiences 13

Fig. 6. Plot of wall clock time versus number of nodes on the NCSA TeraGrid cluster for the
parallel components of Montage (version 2.1), using the baseline mProject algorithm, building the
benchmark 2MASS mosaic covering 6 degrees × 6 degrees centered at M16. The total time for the
end-to-end run is shown as the thick black line.

exception of some small initialization and finalization code, all of the parallel code
is non-sequential. The main reason the parallel modules fail to scale linearly as the
number of processors is increased is I/O. On a computer system with better parallel
I/O performance, one would expect to obtain better speedups; i.e., the situation where
the amount of work is too small for the number of processors has not been reached,
nor has the Amdahl’s law limit (where speedup is limited by the serial fraction of the
program) been reached. With the algorithmic improvements of the fast mProject, the
128-node time has been further reduced down to 32.4 minutes, for an overall speedup
(including parallelization and algorithmic improvements) of 78.6.

Note that there is certainly some variability inherent in these timings. For exam-
ple, the time to run mImgtbl should be the same in all cases, since it is always run on
a single processor. However, the measured results vary from 0.7 to 1.4 minutes. Addi-
tionally, since some of the modules’ timings are increasing as the number of processors
is increased, one would actually choose the fastest timing and run the module on only
the number of processors that were used for that timing. For example, mBgExec on
this machine should only be run on 16 processors, no matter how many are used for
the other modules.

These timings are probably close to the best that can be achieved on a single
cluster, and can be thought of as a lower bound on any parallel implementation,
including any grid implementation. However, there are numerous limitations to this
implementation, including that a single pool of nodes with shared access to a common
file system is required, and that any single failure of a module or sub-module will cause
the entire job to fail, at least from that point forward. The next section discusses a

14 Katz, D.S., et. al

Fig. 7. Plot of wall clock time versus number of nodes on the NCSA TeraGrid cluster for
the parallel components of Montage (version 2.1), with the fast mProject algorithm, building the
benchmark 2MASS mosaic covering 6 degrees × 6 degrees centered at M16. The total time for the
end-to-end run is shown as the thick black line.

more general approach that can overcome these limitations.

3.4. Grid-enabling Montage with Pegasus. Pegasus [22, 23, 24, 25], which
stands for Planning for Execution in Grids, is a framework that enables the mapping of
complex workflows onto distributed resources such as the grid. In particular, Pegasus
maps an abstract workflow to a form that can be executed on the grid, on a variety of
computational platforms from single hosts, to condor pools, to compute clusters, to
the TeraGrid. The Pegasus framework allows users to customize the type of resource
and data selections performed as well as to select the information sources. Pegasus
was developed as part of the GriPhyN Virtual Data System [26].

Abstract workflows describe the analysis in terms of logical transformations and
data without identifying the resources needed to execute the workflow. The abstract
workflow for Montage consists of the various application components shown in Figure
5. The nodes of the abstract workflow represent the logical transformations such as
mProject, mDiff and others. The edges of the workflow represent the data dependen-
cies between the transformations. For example, mAdd requires all the files generated
by all the previous mBackground steps.

3.4.1. Mapping application workflows. Mapping the abstract workflow de-
scription to an executable form involves finding the resources that are available and
can perform the computations, the data that is used in the workflow, and the nec-
essary software. Pegasus consults various grid information services to find the above
information (Figure 9). In the following description, we illustrate the Pegasus frame-
work configured to use a specific set of information sources. Pegasus uses the logical

Astronomical Image Mosaicking on a Grid: Initial Experiences 15

Fig. 8. Speedup of Montage (version 2.1) building the benchmark 2MASS mosaic covering 6
degrees × 6 degrees centered at M16, on the specified number of nodes of the NCSA TeraGrid cluster.
For each number of nodes, two speedup numbers are shown, one from simply parallelizing parts of
the Montage code, and one that includes the parallelization as well as algorithmic improvements.
The primary algorithmic improvement involved replacing the mProject code with a new, fast plane-
to-plane implementation.

filenames referenced in the workflow to query the Globus Replica Location Service
(RLS) [27] to locate the replicas of the required data. We assume that data may be
replicated across the grid and that the users publish their data products into RLS.
Given a set of logical filenames, RLS returns a corresponding set of physical file loca-
tions. After Pegasus produces new data products, it registers them into the RLS as
well (unless the user does not want that to happen). Intermediate data products can
be registered as well.

In order to be able to find the location of the logical transformations defined in
the abstract workflow, Pegasus queries the Transformation Catalog (TC) [28] using
the logical transformation names. The catalog returns the physical locations of the
transformations (on possibly several systems) and the environment variables necessary
for the proper execution of the software. Pegasus queries the Globus Monitoring and
Discovery Service (MDS) [29] to find the available resources and their characteristics
such as the load, the scheduler queue length, and available disk space. The information
from the TC is combined with the MDS information to make scheduling decisions.
When making resource assignments, Pegasus prefers to schedule the computation
where the data already exist; otherwise, it makes a random choice or uses a simple
scheduling technique. Additionally, Pegasus uses MDS to find information about the
location of the GridFTP servers [20] that can perform data movement, job managers
[30] that can schedule jobs on the remote sites, storage locations, where data can
be pre-staged, shared execution directories, the RLS into which new data can be

16 Katz, D.S., et. al

Fig. 9. Mapping an abstract workflow onto the grid resources. (A particular set of information
sources is used.)

registered, site-wide environment variables, etc. This information is necessary to
produce the submit files that describe the necessary data movement, computation
and catalog updates.

The information about the available data can be used to optimize the concrete
workflow. If data products described within the abstract workflow already exist, Pe-
gasus can reuse them and thus reduce the complexity of the concrete workflow. In
general, the reduction component of Pegasus assumes that it is more costly to execute
a component (a job) than to access the results of the component if that data is avail-
able. For example, some other user may have already materialized (made available
on some storage system) part of the entire required dataset. If this information is
published into the RLS, Pegasus can utilize this knowledge and obtain the data, thus
avoiding possibly costly computation. As a result, some components that appear in
the abstract workflow do not appear in the concrete workflow.

Pegasus also checks for the feasibility of the abstract workflow. It determines the
root nodes for the abstract workflow and queries the RLS for the existence of the
input files for these components. The workflow can only be executed if the input files
for these components can be found to exist somewhere on the grid and are accessible
via a data transport protocol.

The final result produced by Pegasus is an executable workflow that identifies the
resources where the computation will take place. In addition to the computational
nodes, the concrete, executable workflow also has nodes for data transfer that stage
data in and out of the computations, data registration nodes that can update various
catalogs on the grid (for example, RLS), and also nodes that can stage-in statically
linked binaries. Figure 10 shows a snapshot of a small Montage workflow that consists
of 1200 executable jobs.

3.4.2. Workflow execution. The concrete workflow produced by Pegasus is in
the form of submit files that are given to DAGMan and Condor-G [31] for execution.
The submit files indicate the operations to be performed on given remote systems
and the order in which the operations need to be performed. Given the submit

Astronomical Image Mosaicking on a Grid: Initial Experiences 17

Fig. 10. Concrete Montage workflow produced by Pegasus. The light colored-nodes represent
data stage-in and the dark colored nodes, computation.

files, DAGMan submits jobs to Condor-G for execution. DAGMan is responsible for
enforcing the dependencies between the jobs defined in the concrete workflow.

In case of job failure, DAGMan can retry a job a given number of times. If
that fails, DAGMan generates a rescue workflow that can be potentially modified and
resubmitted at a later time. Job retry is useful for applications that are sensitive
to environment or infrastructure instability. The rescue workflow is useful in cases
where the failure was due to lack of disk space that can be reclaimed or in cases where
totally new resources need to be assigned for execution. Obviously, it is not always
beneficial to map and execute an entire workflow at once, because resource availability
may change over time. Therefore, Pegasus also has the capability to map and then
execute (using DAGMan) one or more portions of a workflow [25].

3.4.3. Montage portal. In this section, we illustrate how we can combine
application-specific services and grid-based services to provide users with a Montage
portal.

The Montage TeraGrid portal has a distributed architecture, as illustrated in
Figure 11. The portal is comprised of the following five main components, each having
a client and server: (i) User Portal, (ii) Abstract Workflow Service, (iii) 2MASS Image
List Service, (iv) Grid Scheduling and Execution Service, and (v) User Notification
Service. These components are described in more detail below.

User Interface. Users on the internet submit mosaic requests by filling in a sim-
ple web form with parameters that describe the mosaic to be constructed, including
an object name or location, mosaic size, coordinate system, projection, and spatial
sampling. After request submission, the remainder of the data access and mosaic
processing is fully automated with no user intervention. The server side of the user
portal includes a CGI program that receives the user input via the web server, checks
that all values are valid, and stores the validated requests to disk for later processing.
A separate daemon program with no direct connection to the web server runs contin-
uously to process incoming mosaic requests. The processing for a request is done in
two main steps:

1. Call the abstract workflow service client code.

18 Katz, D.S., et. al

Fig. 11. The distributed architecture of the Montage TeraGrid portal.

2. Call the grid scheduling and execution service client code and pass to it the
output from the abstract workflow service client code.

Abstract Workflow Service. The abstract workflow service takes as input a celes-
tial object name or location on the sky and a mosaic size and returns a zip archive
file containing the abstract workflow as a directed acyclic graph (DAG) in XML and
a number of input files needed at various stages of the Montage mosaic processing.
The abstract workflow specifies the jobs and files to be encountered during the mosaic
processing, and the dependencies between the jobs. These dependencies are used to
determine which jobs can be run in parallel on multiprocessor systems.

2MASS Image List Service. The 2MASS Image List Service takes as input a celes-
tial object name or location on the sky (which must be specified as a single argument
string), and a mosaic size. The 2MASS images that intersect the specified location
on the sky are returned in a table, with columns that include the filenames and other
attributes associated with the images.

Grid Scheduling and Execution Service. The Grid Scheduling and Execution Ser-
vice takes as input the zip archive generated by the Abstract Workflow Service, which
contains the abstract workflow, and all of the input files needed to construct the mo-
saic. The service authenticates users, schedules the job on the grid using Pegasus,
and then executes the job using Condor’s DAGMan.

Users are authenticated on the TeraGrid using their grid security credentials. The
user first needs to save their proxy credential in the MyProxy server [21]. MyProxy is a
credential repository for the grid that allows a trusted server (like our Grid Scheduling
and Execution Service) to access grid credentials on the users behalf. This allows the
appropriate credentials to be retrieved by the portal using the user’s username and
password.

Astronomical Image Mosaicking on a Grid: Initial Experiences 19

Once authentication is completed, Pegasus schedules the Montage workflow onto
the TeraGrid or other clusters managed by PBS and Condor. Upon completion, the
final mosaic is delivered to a user-specified location and the User Notification Service,
described below, is contacted.

User Notification Service. The last step in the grid processing is to notify the user
with the URL where the mosaic may be downloaded. This notification is done by a
remote user notification service so that a new notification mechanism can be used later
without having to modify the Grid Scheduling and Execution Service. Currently the
user notification is done with a simple email, but a later version will use the Request
Object Management Environment (ROME), being developed separately for the Na-
tional Virtual Observatory. ROME will extend our portal with more sophisticated
job monitoring, query, and notification capabilities.

Our design exploits to the maximum the parallelization inherent in the Montage
architecture. The Montage grid portal is flexible enough to run a mosaic job on a
number of different cluster and grid computing environments, including Condor pools
and TeraGrid clusters. We have demonstrated processing on both a single cluster
configuration and on multiple clusters at different sites having no shared disk storage.

Figure 12 shows the Sword of Orion (M42, Trapezium, Great Nebula). This
mosaic was obtained by running a Montage workflow through Pegasus and executing
the concrete workflow the TeraGrid resources.

Fig. 12. Mosaic of M42 obtained using Pegasus and the TeraGrid resources.

3.4.4. Timing results. When using remote grid resources for the execution
of the concrete workflow, there is a non-negligible overhead involved in acquiring
resources and scheduling the computation over them. In order to reduce this overhead,

20 Katz, D.S., et. al

Pegasus can aggregate the nodes in the concrete workflow into clusters so that the
remote resources can be utilized more efficiently. The benefit of clustering is that the
scheduling overhead (from Condor-G, DAGMan and remote schedulers) is incurred
only once for each cluster. In the following results we cluster the nodes in the workflow
within a workflow level (or workflow depth). In case of Montage, the mProject jobs
are within a single level, mDiff jobs in another level, and so on. Clustering can be
done dynamically based on the estimated run time of the jobs in the workflow and
the processor availability.

 10

 100

 1000

 0 20 40 60 80 100 120 140

W
al

l C
lo

ck
 T

im
e

(m
in

ut
es

)

No. of processors

277.9

134.6

71.5

43.2

28.2

18.8 18.6 18.1

Total Time

Fig. 13. Total time (in minutes) for executing the concrete workflow for creating a mosaic
covering 6 degrees × 6 degrees region centered at M16. The numbers on the curve indicate the
runtime in minutes.

Figure 13 shows the end-to-end time taken to execute the concrete workflow for
creating a 2MASS mosaic covering 6 degree × 6 degree region centered at M16 using
resources from the NCSA TeraGrid Cluster. Condor Glidein [32] was used to acquire
the resources. Once the resources are acquired, they are available for executing the
workflow and there is no queuing delay at the remote resource. The workflow was
executed using DAGMan running on a host at ISI. The time taken to transfer the
input data and the output mosaic is not included in this figure. These measurements
were made using Montage version 3.0β5. The figure shows the time taken in minutes
for DAGMan to execute the workflow as the number of processors are increased. The
numbers of processors used were 1, 2, 4, 8, 16, 32, 64 and 128. The nodes in the
workflow were clustered so that the number of clusters at each level of the workflow
was equal to the number of processors. As the number of processors is increased and
thus the number of clusters increases, the Condor overhead becomes the dominating
factor. (DAGMan takes approximately 1 second to submit each cluster into the condor
queue. Condor’s scheduling overheads add additional delay.) As a result we do not see
a corresponding decrease in the workflow execution time as we increase the number
of processors. There are also sequential sections in the workflow that limit the overall
parallel efficiency.

Astronomical Image Mosaicking on a Grid: Initial Experiences 21

Figure 14 shows the time taken to execute the concrete workflow end-to-end (not
including the initial data stage in and the final data stage out) as the size of the desired
mosaic increases. The size of the mosaic increases from 1 degree × 1 degree to 10
degree × 10 degree centered at M16. The numbers near the data points in the graph
show the number of nodes (transformations) in the abstract workflow. DAGMan was
used to execute the workflow using 64 processors at the NCSA TeraGrid Cluster.
Consequently, there were 64 clusters at each level of the workflow. The figure shows
the scalability of Pegasus and the Montage application as the size of the abstract
workflow increases. There is an increase of approximately 5 minutes in the workflow
execution time per degree increase in the desired mosaic size.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12

W
al

l C
lo

ck
 T

im
e

(m
in

ut
es

)

size of mosaic in degrees

225
723

1629

2929

4469

6283

8504

11059

13899

17034

Total time

Fig. 14. Total time taken (in minutes) for executing the concrete workflow as the size of the
desired mosaic increases from 1 degree × 1 degree to 10 degree × 10 degree centered at M16. The
numbers on the curve indicate the number of nodes in the abstract workflow.

Note that these timings are for computing with Montage version 3.0β5, which
is not the same as that done with the MPI version of Montage version 2.1. Specific
changes currently in version 3.0β5 include running mOverlap and mImgtlb on the por-
tal rather than on the compute nodes, combining mDiff and mFit into a new module
called mDiffFit, and not generating a single output mosiac but rather multiple small
mosaics. These changes make it difficult to make a direct comparison of the run
times of the Pegasus and MPI versions on Montage, but it certainly appears that the
Pegasus version will come close to the lower bound established by the MPI version.

4. Conclusions. Montage was written as a very general set of modules to permit
a user to generate astronomical image mosaics. Mosaics are large images that are built
from multiple small images. Montage includes modules that are used to reproject
images onto a common space, calculate overlaps between images, calculate coefficients
to permit backgrounds of overlap regions to be matched, modify images based on those
coefficients, and co-add images using a variety of methods of handling multiple pixels
in the same output space. The Montage modules can be run on a single processor
computer using a simple shell script. Because this approach can take a long time

22 Katz, D.S., et. al

for a large mosaic, alternatives to make use of the grid have been developed. The
first alternative, using MPI versions of the computational intensive modules, has very
good performance but is somewhat limited. A second alternative, using Pegasus and
other grid tools, is more general and allows for the execution on a variety of platforms
without having to change the underlying code base. Various scheduling techniques can
be used to optimized the concrete workflow for a particular execution platform. Other
benefits of Pegasus include the ability to opportunistically take advantage of available
resources (through dynamic workflow mapping) and the ability to take advantage of
pre-existing intermediate data products, thus potentially improving the performance
of the application.

5. Acknowledgments. The Pegasus software has been developed at the Uni-
versity of Southern California by Gaurang Mehta and Karan Vahi. Use of TeraGrid
resources for the work in this chapter was supported by the National Science Founda-
tion under the following NSF programs: Partnerships for Advanced Computational
Infrastructure, Distributed Terascale Facility (DTF), and Terascale Extensions: En-
hancements to the Extensible Terascale Facility.

REFERENCES

[1] The Montage project web page, http://montage.ipac.caltech.edu/
[2] The Flexible Image Transport System (FITS), http://fits.gsfc.nasa.gov,

http://www.cv.nrao.edu/fits.
[3] E. W. Greisen and M. Calabretta, Representation of Celestial Coordinates In FITS,

http://www.atnf.csiro.au/people/mcalabre/WCS.htm
[4] The Distributed Terascale facility, http://www.teragrid.org/
[5] The 2MASS Project, http://www.ipac.caltech.edu/2mass
[6] The Digitized Palomar Observatory Sky Survey (DPOSS),

http://www.astro.caltech.edu/˜george/dposs
[7] The Sloan Digital Sky Survey, http://www.sdss.org/
[8] G. B. Berriman, D. Curkendall, J. C. Good, J. C. Jacob, D. S. Katz, M. Kong, S.

Monkewitz, R. Moore, T. A. Prince, and R. E. Williams, An architecture for access to
a compute intensive image mosaic service in the NVO in Virtual Observatories, A S. Szalay,
ed., Proceedings of SPIE, v. 4846, 2002, pp. 91-102.

[9] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob, D. S. Katz, C. Kesselman, A. C.

Laity, T. A. Prince, G. Singh, and M.-H. Su, Montage: A grid enabled engine for
delivering custom science-grade mosaics on demand, in Optimizing Scientific Return for
Astronomy through Information Technologies, P. J. Quinn, A. Bridger, eds., Proceedings of
SPIE, v. 5493, 2004, pp. 221-232.

[10] Montage Version 1.7.x documentation and download http://montage.ipac.caltech.edu/docs/
[11] E. Bertin and S. Arnouts, SExtractor: software for source extraction, Astronomy and Astro-

physics Supplement, v. 117, 1996, pp. 393-404.
[12] Montage Version 1.7.x. Photometric and Calibration Accuracy,

http://montage.ipac.caltech.edu/docs/accuracy.html
[13] Mopex, the Spitzer Science Center Mosaic Engine,

http://ssc.spitzer.caltech.edu/postbcd/doc/mosaicer.pdf
[14] International Virtual Observatory Alliance, http://www.ivoa.net/
[15] F. Ochsenbein, R. Williams, C. Davenhall, D. Durand, P. Fernique, D. Giaretta, R.

Hanisch, T. McGlynn, A. Szalay, M. B. Taylor, and A. Wicenec, VOTable format
definition version 1.1, http://www.ivoa.net/Documents/latest/VOT.html

[16] D. Tody, R. Plante, Simple image access specification version 1.0,
http://www.ivoa.net/Documents/latest/SIA.html

[17] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI: The
Complete Reference, The MIT Press, Cambridge, MA, 1996.

[18] R. D. Williams, S. G. Djorgovski, M. T. Feldmann, and J. C. Jacob, Atlasmaker: A grid-
based implementation of the hyperatlas, Astronomical Data Analysis Software & Systems
(ADASS) XIII, 2003.

[19] The Globus Toolkit, http://www.globus.org/toolkit/

Astronomical Image Mosaicking on a Grid: Initial Experiences 23

[20] B. Allcock, S. Tuecke, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kessel-

man, S. Meder, V. Nefedova, and D. Quesnel, Data management and transfer in high
performance computational grid environments, Parallel Computing, v. 28(5), 2002, pp. 749-
771.

[21] J. Novotny, S. Tuecke, and V. Welch, An online credential repository for the grid: MyProxy,
in Proceedings of 10th IEEE International Symposium on High Performance Distributed
Computing, 2001.

[22] E. Deelman, S. Koranda, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Black-

burn, P. Ehrens, A. Lazzarini, and R. Williams, GriPhyN and LIGO, building a virtual
data grid for gravitational wave scientists, in Proceedings of 11th IEEE International Sym-
posium on High Performance Distributed Computing, 2002.

[23] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, and K. Vahi, Mapping abstract
complex workflows onto grid environments, Journal of Grid Computing, v. 1(1), 2003.

[24] E. Deelman, R. Plante, C. Kesselman, G. Singh, M.-H. Su, G. Greene, R. Hanisch, N.

Gaffney, A. Volpicelli, J. Annis, V. Sekhri, T. Budavari, M. Nieto-Santisteban, W.

OMullane, D. Bohlender, T. McGlynn, A. Rots, and O. Pevunova, Grid-based galaxy
morphology analysis for the national virtual observatory, in Proceedings of SC2003, 2003.

[25] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, and

M. Livny, Pegasus: mapping scientific workflows onto the grid, in Across Grids Conference
2004.

[26] GriPhyN, http://www.griphyn.org/
[27] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman,

P. Kunst, M. Ripeanu, B. Schwartzkopf, H. Stockinger, K. Stockinger, and B. Tier-

ney, Giggle: a framework for constructing scalable replica location services, in Proceedings
of SC2002, 2002.

[28] E. Deelman, C. Kesselman, and G. Mehta, Transformation catalog design for GriPhyN,
GriPhyN Technical Report 2001-17, 2001.

[29] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, Grid information services
for distributed resource sharing, in Proceedings of the 10th IEEE Symposium on High-
Performance Distributed Computing, 2001.

[30] K. Czajkowski, A. K. Demir, C. Kesselman, and M. Thiebaux, Practical resource man-
agement for grid-based visual exploration, in Proceedings of the 10th IEEE Symposium on
High-Performance Distributed Computing, 2001.

[31] J. Frey, T. Tannenbaum, M. Livny, and S. Tuecke, Condor-G: a computation managament
agent for multi-institutional grids, in Proceedings of the 10th IEEE Symposium on High-
Performance Distributed Computing, 2001.

[32] Condor-Glidein, http://www.cs.wisc.edu/condor/glidein

