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1 Introduction 

1.1 Purpose of this Document 
This document describes the design of Montage, an astronomical image mosaic service 
for the National Virtual Observatory. It will deliver on demand science-grade 
astronomical image mosaics that satisfy user-specified parameters of projection, 
coordinates, size, rotation and spatial sampling. Science-grade in this context means that 
the impact of the removal of terrestrial and instrumental backgrounds on the fidelity of 
the data is understood and removed over different spatial scales. The service will deliver 
mosaics of images released by the 2 Micron All Sky Survey (2MASS), the Digital 
Palomar Sky Survey (DPOSS) and Sloan Digital Sky Survey (SDSS) projects. 

Montage will run operationally on the TeraGrid, (http://www.npaci.edu/teragrid/). Users 
will submit requests to Montage through existing astronomical portals, and visualize and 
interact with the delivered mosaics through these same portals .  
 
A fully documented, portable version of the software will be publicly available for 
running on local clusters and individual workstations. The compute engine will be quite 
general and will allow users to build mosaics from their own data. 
 

1.2 Schedule for Delivery of Software Design Specification for 
Montage 

The complete design specification of Montage will contain a description of  

• design considerations 

• overall architectural, “high- level” design  

• how the high- level design satisfies the science requirements and use cases. 

• Interface specifications (“Application Programmers Interface”) 

• Low level design, including error handling strategies and algorithms implemented by 
the system  

 

The complete design specification will be delivered incrementally over several releases 
of this document, according to the schedule described in Table 1.  The Montage project 
aims to deliver a complete, initial design specification before the first public release of 
the system (February 28, 2003) and will then provide updates thereafter for subsequent 
releases.  We anticipate that the design updates are incremental and will largely 
accommodate customers’ requests for functionality. 
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Table 1:  Schedule for Major Releases of Software Design Specification 
of Montage 

 

 

 

SDS 
Version 

Release Date Montage 
Version  

(Release Date) 

SDS Contents 

1.0 6/30/2002 1.0.0 

(2/28/2003) 

Design considerations 

Overall architecture 

Application of design to use cases 

1.1 11/18/2002 1.1.0 

(2/28/2003) 

Design considerations 

Overall architecture 

Application of design to use cases 

Interface Specifications 

Low level design, incl. algorithms and 
error handling strategies 

2.0 8/30/2003 2.0.0 

(2/28/2004) 

Updates to 1.x as needed 

3.0 8/30/2004 3.0.0 

(1/10/2005) 

Updates to 2.x as needed 

 

1.3 Supporting Materials 
Montage will be developed according to the style guidelines in 
http://www.construx.com/survivalguide/  ->Coding Standard 
 

2 Design Considerations 

2.1 Drivers and Constraints 

The drivers and constraints governing the design of Montage are made clear in the 
requirements document [1] and in the Software Engineering Plan [2]. The most important 
drivers and constraints are as follows:  
 
• Montage will be able to build small mosaics on a user’s Linux laptop and be able to 

process many simultaneous, large requests on the TeraGrid.  It must therefore be 
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written to ensure portability, and make use of common tools and libraries that exist on 
all widely-used platforms. 

 
• Montage must be a general service, capable of generating image mosaics according to 

user-specified size, rotation, projection and coordinate system.  
 
• Montage must permit exercising the processing steps manually, and must deliver 

intermediate products, such as re-projected images, as science products in their own 
right. 

 
• Montage must permit, without modification to the code, correction for background 

radiation with parameters derived from correction algorithms supplied by data 
providers, and for background corrections with user-supplied parameters.  

 
• Montage has strict performance requirements, and must be scaleable. It must deliver 

custom mosaics from 2MASS, DPOSS and SDSS with sustained throughput of 30 
square degrees (e.g. thirty 1 degree x 1 degree mosaics, one 5.4 degrees x 5.4 degrees 
mosaic, etc.) per minute on a 1024x400Mhz R12K Processor Origin 3000 or machine 
equivalent with a sustained bandwidth to disk of 160 MB/sec. 

 

2.2 Use of Open Source Software 
Montage will use a small set of standard open-source astronomical libraries for reading 
Flexible Image Transport System (FITS) image files, performing coordinate system 
transformations, and handling image projection/de-projection operations.  These libraries 
are portable and well-tested, and a current version will be delivered with all releases of 
Montage. The libraries are: 
 
Library Description Current Release Origin 
CFITSIO FITS reader Version 2.300 HEASARC 
WCSTools Image projection Version 3.0.5 SAO 
Coord Coordinate 

transformation 
Version 1.2 IRSA 

 

2.3 Portability of Montage Software 
To ensure maximal portability and use of Montage, it will not use shared-memory, 
specific DBMS interfaces, or platform-specific libraries, and it will minimize its use of 
memory (as long as it does not compromise the quality and range of the algorithm).  
Ancillary information, such as tables of information on the collection of images that are 
being processed, will be captured in simple text files that can be parsed by any computer. 
 
Montage will be constructed to operate entirely from command-line arguments, using the 
ancillary files describe above to communicate other information needed to process a 
request.  
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Montage will be developed in ANSI-standard C.  It will be guaranteed to compile with 
GNU gcc and to build with GNU gmake.  Other compilers and IDE’s will almost 
certainly work just as well, though we make no guarantees about testing such and will 
only do so as resources permit. 
 
Montage will be built on several UNIX platforms, including but not limited to Solaris, 
AIX, and Linux.   It will of course be tested and run operationally on the TeraGrid. We 
will formally test Montage on IRIX only as resources permit. 
 

2.4 System Environment 
Montage should run on the following platforms and Operating Systems: 
 

Machine OS 
TeraGrid (Operations) Red Hat Linux 6.2 
IBM Blue Horizon AIX 5L 
Linux Cluster Red Hat Linux 6.2 
IPG SGI O2K, O3K IRIX 6.5.x 
Solaris Workstations Solaris 2.7, 2.8 
Linux workstations Red Hat Linux 6.2, 7.x 

 
 

3 High-Level Architecture and Computational Algorithms 

3.1  High Level Design of Montage 
Processing a request for an image mosaic consists of three main steps 
 
• re-projection of input images to a common spatial scale, coordinate system and World 

Coordinate System (WCS) projection; 
• modeling of  background radiation in images to achieve common flux scales and 

background level; 
• rectification of images to a common flux scale and background level; and  
• co-addition of re-projected, background-corrected images into a final mosaic. 
 
To accomplish these requests, Montage will consist of the following independent but 
interoperable components, illustrated in the block diagram in Figure 1:  
 
• A compute engine that performs all re-projection and co-addition of input. 
• A background modeling engine that globally minimize the inter- image differences.  
• A background rectification engine that removes background and instrumental 

radiation from the images. 
• An image coaddition engine that calculates weighted averages of pixel fluxes in the 

final mosaic. 
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Figure 1:  Design Components of Montage – High Level Design.  
Montage performs three principal functions in generating an image 
mosaic, and the components of each are illustrated here.  They are 
image reprojection, background modeling, background rectification, 
and image coaddition. 
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The components can be called separately or in tandem. Figure 2 shows an overview of 
the process flow in Montage.  Essentially all requests will call the reprojection and co-
addition engines. These engines will process all the input images, generate custom 
images according to the user’s specification of coordinates, sampling and projection, and 
co-add the fluxes in the output images.  
 
Calls to the background modeling and rectification engines are made if requested by the 
user.  Background modeling and rectification involves fitting the differences between 
overlapping images on a local (for small mosaics) or global scale and determining the 
parameters for smooth surfaces to be subtracted from each image to bring them to the 
common scale.  These parameters can either be determined on the fly or done once and 
saved in a database for any future mosaics done with the same images. 
 
The advantage of the former is that it allows variations in the fitting algorithms to deal 
with the special cases and, for small regions, will probably be more sensitive to local 
variations than a global fit.  The advantage of the latter is that it provides a uniform view 
of the sky and a tested “best fit” that can be certified as such by the project. 
 
Our design allows us to use both approaches. We will derive and store in a relational 
DBMS at least one set of background fit parameters for the whole sky, based on 
algorithms supplied by the providers of the image collections, but allowing the user the 
option to invoke custom background processing if they think it will provide a better 
mosaic for a local region.  SDSC is committed to providing a DBMS for NVO-related 
processing, but the choice of engine is TBD.  
 
 

3.2 Computational Algorithms in Montage 
 
This section describes the innovations in computational algorithms developed to support 
the design of Montage.  

3.2.1 Image Reprojections and Pixel Overlap 

Image reprojection involves the redistribution of information from a set of input pixels to 
a set of output pixels. For astronomical data, the input pixels represent the total energy 
received from an area on the sky, and it is critical to preserve this information when 
redistributed into output pixels.  Also in astronomy, it is important to preserve the 
positional (astrometric) accuracy of the energy distribution, so common techniques such 
as adding all the energy from an input pixel to the "nearest" output pixel are inadequate. 
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Figure 2: Design Components of Montage - Process Flow Overview.  
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Instead, we must redistribute input pixel energy to the output based on the exact overlap 
of these pixels, possibly even with a weighting function across the pixels based on the 
point spread function for the original instrument.  The goal is to create an output image 
which is as close as possible to that which would have been created if the sky had been 
observed using an instrument with the output image's pixel pattern. We are also 
committed to building a system which handles all astronomical projections and 
coordinate systems equally well. 
 
The most common approach to determining pixel overlap is to project the input pixel into 
the output pixel Cartesian space.  This works well for some projection transformations 
but is difficult for others. One example of a difficult transformation is the Aitoff 
projection, commonly used in astronomy, where locations at the edge of an image 
correspond to undefined locations in  pixel space.  For Montage, we have decided instead 
to project both input and output pixels onto the celestial sphere.  Since all such "forward" 
projections are well defined, the rest of the problem reduces to calculating the area of 
overlap of two convex polygons on a sphere (with no further consideration of the 
projections involved).  The issue of handling reprojections therefore becomes a problem 
of classical spherical trigonometry. 
 
General algorithms exist for determining the overlap of polygons in Cartesian space [3] 
We have modified this approach for use in spherical coordinates to determine the 
intersection polygon on the sphere (a convex hull) and applied Girard's Theorem [4], 
which gives the area of a spherical triangle based on the interior angles, to calculate the 
polygon's area.  
 
The result is that for any two overlapping pixels, we can determine the area of the sky 
from the input pixel that contributes energy to the output pixel.  This provides not only a 
mechanism for accurately distributing input energy to output pixels but, as we shall see, a 
natural weighting mechanism when combining overlapping images. 
 
Our approach implicitly assumes that the polygon defining a single pixel can be 
approximated by the set of great circle segments connecting the pixel's corners.  Since 
even the largest pixels in any realistic image are on the order of a degree across, the non-
linearities along a pixel edge are insignificant.  Furthermore, the only affect this would 
have would be to the astrometric accuracy of the energy location information and would 
amount to a very small fraction (typically less that 0.01) of the size of a pixel.  Total 
energy is still conserved. 
 
The Montage processing scheme is a natural fit with the "drizzle" algorithm developed by 
STScI [5].  Simply, that algorithm shrinks each input pixel's size linearly toward its 
center (a square pixel one arcsecond on a side becomes a square pixel a fraction of an 
arcsecond in size with the same center) before it is reprojected and its flux redistributed 
to the output pixels.  In Montage, this means simply computing different corners in the 
input linear pixel space; the flux redistribution and appropriate area-based normalization 
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are handled naturally by the basic Montage algorithms.  There is a slight impact on 
processing speed since all four pixel corners must be calculated for all pixels (in the non-
drizzle case there is some saving because pixels share corners).  For this reason, "drizzle" 
has been implemented in Montage from its inception. 
 

3.2.2 Background Modeling and Rectification 

 
If several images are to be combined into a mosaic, they must all be projected onto a 
common coordinate system (see above) and then any discrepancies in brightness or 
background must be removed.  Our assumption is that the input images are all calibrated 
to an absolute energy scale (i.e. brightnesses are absolute and should not be modified) 
and that any discrepencies between the images are due to variations in their background 
levels that are terrestrial or instrumental in origin.   
 
The Montage background matching algorithm is based on the assumption that terrestrial 
and instrumental backgrounds can be described by simple functions or surfaces (e.g. 
slopes and offsets).  Stated more generally, we assume that the "non-sky" background has 
very little energy in any but the lowest spatial frequencies.  If this not the case, it is 
unlikely that any generalized background matching algorithm will be able distinguish 
between "sky" and rapidly varying "background"; background removal will then require 
an  approach that depend on a detailed knowledge of an individual data set. 
  
Given a set of overlapping images, characterization of the overlap differences is key to 
determining how each image should be adjusted before combining them.  We take the 
approach of considering each image individually with respect to it neighbors.  
Specifically, we determine the areas of overlap between each image and its neighbors, 
and use the complete set of overlap pixels in a least-squares fit to determine how each 
image should be adjusted (e.g. what gradient and offset should be added) to bring it 
"best" in line with it  neighbors.   
 
In practice, we only adjust the image by half this amount, since all the neighbors are also 
being analyzed and adjusted and we want to avoid ringing in the algorithm.  After doing 
this for all the images, we iterate (currently for a fixed number of times though we may 
later introduce convergence criteria).  The final effect is to have subtracted a low-
frequency (currently a gradient/offset) background from each image in such a way that 
the cumulative image-to-image differences are minimized. To speed the computation 
(and minimize memory usage), we approximate the gradient and offset values by a planar 
surface fit to the overlap area difference images rather than perform a least squares fit. 
 

3.2.3 Coadditions and Weighting of Output Pixel Fluxes 

In the reprojection algorithm (described in the pixel overlap discussion above), each input 
pixel's energy contribution to an output pixel is added to that pixel (weighted by the sky 
area of the overlap).  In addition, a cumulative sum of these sky area contributions is kept 
for the output pixels (essentially and physically an "area" image). 
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Such images are in practice very flat (with only slight slopes due to the image projection) 
since cumulative affect is that each output pixel is covered but the same amount of input 
area, regardless of the pattern of coverage.  The only real variation occurs at the edges 
of the area covered since there an output pixel may be fractionally covered by input 
pixels. 
 
When combining multiple overlapping images, these area images provide a natural 
weighting function; the output pixel value being the area-weighted average of the images 
being combined. 
 

3.2.4 Parallelization   

The first released code (to which this document applies) is intended to run on a single 
processor. Nevertheless, we can make some remarks on how the design supports 
parallelization.  The basic Montage scenario is to reproject each of the input images to a 
common output specification (producing reprojected image/area files), analyze the 
background by determining the overlap pairs, calculate and fit the difference images, and 
model the background corrections, subtract this model from the reprojected images, and 
finally perform a weighted coaddition to generate the final mosaic. 
 
The only place in this scenario where there is more than pairwise cross-talk between the 
images is the background modeling.  All the other steps can easily be parallelized across 
multiple processing threads or even multiple machines. 
 
The reprojection of each image takes by far the majority of the processing time; the 
reprojection can be performed  independently for each image, even though each image 
uses the same output area definition.  In fact, given the area weighting approach we use, 
the reprojection of an individual image could be parallelized across multiple threads 
through a simple tiling. Similarly, once the image/image overlaps are identified (a fast 
process) the difference image processing can be spread out in the same way. 
 
While the final coaddition nominally feeds into a single output memory array, it too can 
be parallelized by tiling (the output space), though this is rarely necessary as the 
coaddition step is very fast. 
 
This leaves only the background modeling as a linear process. While this cannot be 
subdivided along the lines of the other steps, it would be feasible to parallelize this in a 
more complex way (e.g. blocking the images into regional groups and using the Message 
Passing Interface to manage the intergroup cross-talk).  However, this process is unlikely 
to ever be a primary time sink so this will probably not be necessary. 
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4. Detailed Design of Montage 

4.1. Interface Specifications 
For Montage internal testing and error diagnosis, all programs can take a "-d(ebug) level" 
argument where 'level' is an integer denoting the detail of debugging output generated.   
For some programs this is just an on/off flag, for others it can have a value as high as 4. 
This debugging output will most likely be unavailable in the released code.  
 
 

mImgtbl 
 

Description 
Extracts the FITS header geometry information from a set of files and creates an ASCII image metadata 
table from it used by several of the other programs. 
 

Syntax:  mImgtbl <directory> <images.tbl> 

 
Input Datatype Description 
<directory> char directory to be searched for FITS files 
Output  Description  

<images.tbl> char Column -delimited ASCII table file containing FITS file 
information on the geometry of each image on the sky. 
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mProject 
 

Description 
Reprojects a single image to the scale defined in a FITS –style header template file.  Actually produces 
a pair of images: the reprojected image and an “area” image consisting of the fraction input pixel sky 
area that went into each output pixel.  The “drizzle” algorithm is implemented.  The algorithm proceeds 
by mapping pixel corners (as adjusted by drizzle, if called) from the input pixel space to the output pixel 
space, calculating overlap area with each output pixel, and accumulating an appropriate fraction of the 
input flux into the output image pixels.  In addition, the appropriate fraction of the input pixel area is 
accumulated into the area image pixels.  Projection of points from input pixel space to output pixel 
space is calculated in two steps: first map from input pixel space to sky coordinates; second map from 
sky coordinates to output pixel space. 
 

Syntax:   mProject  <in.fits> <out.fits> <template.hdr> [-drizzle 
<factor>] 
 
Input Datatype Description 
<in.fits> char <in.fits> is the FITS image to be re-projected 
[-drizzle<factor>] Real*4  Invokes the STScI “drizzle” algorithm 
Output  Description  

<out.fits> char Output reprojected FITS file  
<template.hdr> char Column delimited ASCII file containing the lines to be 

used to create the output FITS header.  

 

mProjectExec 
 

Description 
A simple executive that runs mProject for each image in an image metadata table. 
 
Syntax 
mProjExec <images.tbl> <template.hdr> <directory> <stats.tbl> 

 
 
Input Datatype Description 
<images.tbl> char ASCII table created by mImgtbl 
<template.hdr> char  Column delimited ASCII file containing the lines to be used 

to create the output FITS header.  
Output  Description  

<directory> char Location where the reprojected images will  be stored 
<stats.tbl> char ASCII runtime log of the processing of the individual images 
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mAdd 
 

Description 
Coadd the reprojected images using the same FITS header template and working from the same 
mImgtbl list.  Both pixel values and pixel areas are accumulated 
 
Syntax 
mAdd <images.tbl> <template.hdr><mosaic.fits>  
 
Input Datatype Description 
<images.tbl> char ASCII table created by mImgtbl 
<template.hdr> char  Column delimited ASCII file containing the lines to be used to 

create the output FITS header.  
Output  Description  

<mosaic.fits> char Final co-added mosaic in FITS format 
 

mOverlaps 
 

Description 
Analyze an image metadata table to determine a list of overlapping images.  Each image is compared 
with every other image to determine all overlapping image pairs.  A pair of images are deemed to 
overlap if any pixel around the perimeter of one image falls within the boundary of the other image. 
 
Syntax 
 mOverlaps <images.tbl> <diffs.tbl>  
 
 
Input Datatype Description 
<images.tbl> char ASCII table created by mImgtbl 
Output  Description  

<diffs.tbl> char Column delimited ASCII file that contains a summary of the 
pairs of images that overlap. 
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mDiff 
 
Description 
Analyze an image metadata table to determine a list of overlapping images.  Each image is compared 
with every other image to determine all overlapping image pairs.  A pair of images are deemed to 
overlap if any pixel around the perimeter of one image falls within the boundary of the other image. 
 
Syntax 
 mDiff <in1.fits> <in2.fits> <template.hdr> <out.fits> 
 
 
Input Datatype Description 
<in2.fits> Char FITS format file to be differenced (locations specified by the 

<directory> output from mDiffExec) 
<in2.fits> Char FITS format file to be differenced ((locations specified by 

the <directory> output from mDiffExec) 
<template.hdr> Char  Column delimited ASCII file containing the lines to be used 

to create the output FITS header.  
Output  Description  

<out.fits> char FTS format difference file 
 

 

mDiffExec 
 
Description 
A simple executive that runs mDiff on each image pair identified by mOverlaps 
 
Syntax  
mDiffExec <diffs.tbl> <template.hdr> <directory> 

  
 
Input Datatype Description 
<diffs.tbl> Char Table created by mOverlaps 
<template.hdr> Char  
   
Output  Description  

<template.hdr> Char Column delimited ASCII file containing the lines to be used 
to create the output FITS header. 
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mFitPlane 
 
Description 
Applies a least squares planar fit, excluding outlier pixels, to an image.  Used on the difference images 
generated by mDiff.  
 
Usage:  mFitplane  <in.fits> 
 
Input: <in.fits> are the FITS images to be fit. 
Output:  Parameters describing plane are written as “stdout,” where they are read by mDiffExec. 
 
Syntax  
mFitPlane <in.fits> 

  
 
Input Datatype Description 
<in.fits> char FITS image to which least squares fit is to be applied 
   
Output  Description  

Parameters 
describing plane 

char Parameters are written as “stdout,” where they are read by 
mDiffExec 

 
 

mFitExec 
 
Description 
A simple executive that runs mFitplane on all of the overlapping image pairs identified by mOverlaps.  
Creates a table of image-to-image difference parameters. 
 
 
Syntax  
mFitExec <diffs.tbl> <fits.tbl> 

 
 
Input Datatype Description 
<diffs.tbl> char Column delimited ASCII table created by mOverlaps 
   
Output  Description  

<fits.tbl> char Column -delimited ASCII file that contains the background fits 
for all images. 
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mBgModel 
 

Description 
Modeling/fitting program which uses the image-to-image difference parameter table to iteratively 
determine a set of corrections to apply to each image to achieve a “best” global fit.  The algorithm 
proceeds by determining the neighbors of each image, determining (in a least squares sense) the best 
correction plane to match the image’s background with its neighbors, and iterating for a fixed number 
of iterations to achieve convergence on a global solution. 
 
Syntax  
mBgModel <images.tbl> <fits.tbl> <corrections.tbl> 
 
Input Datatype Description 
<images.tbl> Char ASCII table created by mImgtbl 
<fits.tbl> Char Column -delimited ASCII file that contains the 

background fits for all images. 
 

Output  Description  

<corrections.tbl> 
 

Char Column delimited ASCII file that contains the corrections 
to be applied to the original (projected) images. 
 

 

mBackground 
 

Description 
Remove a background plane from a FITS image.  The background correction applied to the image is 
specified as Ax+By+C, where (x,y) is the pixel coordinate using the image center as the origin, and 
(A,B,C) are the background plane parameters specified as linear coefficients. 
 

Syntax  
mBackground <in.fits> <A> <B> <C> <xcenter> <ycenter> <out.fits> 
 
Input Datatype Description 
<in.fits> Char FITS image to be background corrected 
<A> Real*4 Plane fit parameters, as stored in the 

<corrections.tbl> table by mBgModel. 
<B> Real*4 Plane fit parameters, as stored in the 

<corrections.tbl> table by mBgModel 
<C> Real*4 Plane fit parameters, as stored in the 

<corrections.tbl> table by mBgModel 
<xcenter> Real*4 Plane fit parameters, as stored in the 

<corrections.tbl> table by mBgModel 
<ycenter> Real*4 Plane fit parameters, as stored in the 

<corrections.tbl> table by mBgModel 
Output  Description  

<out.fits> char Output corrected FITS  image 
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mBgExec 
 
Description 
A simple executive that runs mBackground on all the images in the metadata table 
 
Syntax  
mBgExec <images.tbl> <corrections.tbl> <directory> 

  
 
Input Datatype Description 
<images.tbl>  ASCII table created by mImgtbl 
<corrections.tbl>  Column delimited ASCII file that contains the corrections 

to be applied to the original (projected) images. 
 

   

Output  Description  

<directory>  Location where the background corrected images will be 
stored. 

 

mBgModel 
 
Description 
Determines through iterative least squares fitting the parameters of the background model 
 
Syntax  
mBgModel images.tbl fits.tbl corrections.tbl [-iteration niter]  
 
 

 
 
Input Datatype Description 
<images.tbl> Char ASCII table created by mImgtbl 
<corrections.tbl> Char Column delimited ASCII file that contains the corrections 

to be applied to the original (projected) images. 
 

[-iteration niter] Int The number of interations to run on the background 
model   (defaults to 25).  There is no convergence 
criterion on this algorithm yet but the algorithm is fast 
and usually converges  quickly.  
 

Output  Description  

<fits.tbl> char This table contains the set of plane parameters fit to the 
difference image generated from the diffs.tbl list. 
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4.2. Definitions of Montage File Formats 

4.2.1. ASCII Table formats & the images.tbl file 

 
The modules described above read and generate column delimited flat ASCII table files, 
whose format is obvious from this description. One of these files, images.tbl, is worth 
special discussion because it contains metadata describing the geometry on the sky of a 
set of image files (i.e. FITS header WCS keyword values).  It is generated by mImgtbl 
and use by several other programs. 
 
Montage uses a simple table reading library which looks for data in an ASCII file having 
a header with column names delimited by "|" characters and data records aligned in these 
columns. 
 
Image metadata tables must contain the geometric information for each FITS image plus 
a counter and a pointer to the FITS file (In the sample file below, ns and nl are used in 
place of NAXIS1 and NAXIS2 to save space): 
 

  
 
The first line in the file is a parameter used by visualization software and can be treated 
as a comment in this context. 
 
Key to the required columns in the  images.tbl file 
 
Users may specify additional columns or keywords/comments above the header.  
Dimensions 1 and 2 refer to axes 1 and 2 of a two-dimensional image. 
 
Column Definition 

  
FITS 
standard? 

cntr A unique counter (row number) N 
ctype1, 
ctype2 

The coordinate system (the first four characters) and WCS 
map projection (last three characters) for dimensions 1 and 2 
 

Y 

equinox Precessional year associated with the coordinate system Y 
naxis1, 
naxis2 

The size of the image in pixels for dimensions 1 and 2 
 

Y 

\datatype = fitshdr 
| cntr |      ra     |     dec     |  ns |  nl | ctype1 | ctype2 |   crpix1 |   crpix2 |    crval1   |    crval2   |   cdelt1  |   cdelt2  |   crota2    |  epoch 
| fname                             | 
| int  |    double   |    double   | int | int |  char  |  char  |   double |   double |    double   |    double   |   double  |   double  |   double    |  
double| char                                
      0   265.1229433   -29.5911740   512  1024 RA---SIN DEC--SIN     256.50     512.50   265.1227836   -29.5910351 -2.7778e-
04  2.7778e-04     0.0011373  2000.00 ./2mass-atlas-980702s-j0830021.fits  
      1   265.1229367   -29.3217296   512  1024 RA---SIN DEC--SIN     256.50     512.50   265.1227774   -29.3215907 -2.7778e-
04  2.7778e-04     0.0011343  2000.00 ./2mass-atlas-980702s-j0830033.fits  
      2   265.1229302   -29.0522851   512  1024 RA---SIN DEC--SIN     256.50     512.50   265.1227713   -29.0521462 -2.7778e-
04  2.7778e-04     0.0011313  2000.00 ./2mass-atlas-980702s-j0830044.fits  
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Column Definition 
  

FITS 
standard? 

crval1, 
crval2 

The coordinates of a reference location on the sky (often at 
the center of the image) for dimensions 1 and 2 

Y 

crpix1, 
crpix2 

The pixel coordinates of the reference location (can be 
fractional and can be off the image) for dimensions 1 and 2 
 

Y 

crpix2 The pixel scale (in degrees on the sky per pixel) at the 
reference location for dimensions 1 and 2 
 

Y 

cdelt1, 
cdelt2 

The pixel scale (in degrees on the sky per pixel) 
   cdelt2  = at the reference location 

Y 

crota2 The rotation angle from the "up" direction to the 
             celestial pole 
 

Y 

fname The path to the original FITS file N 
 

4.2.2. The Template.hdr file 
 
Description: 
A text file containing one FITS header card per line.  It looks like a FITS header, though 
with newlines after every card and with the trailing blanks on each line removed.  Often 
generated by hand but can be created by mMakeHdr analyzing an images.tbl file. 
 
FITS headers consist of a variable of number of 80-character card images at the 
beginning of the file concatenated together with no punctuation. 
 
The template.hdr files used by Montage differs from this only in that the card images are 
one to a line (left justified and newline delimited) and the lines can be any length less 
than 80 characters. Other than that, the information content is identical; any valid FITS 
header (with WCS information) is acceptable.  The example below is for a Gnomonic-
projection image, 3000x3000 pixels (1x1 degree) centered at 265.91334 -29.3577 
Equatorial J2000 
 
 
 
 
 
 
    
 
 
 
 
 
    

   SIMPLE  =                    T /  
   BITPIX  =                  -64 /  
   NAXIS   =                    2 /  
   NAXIS1  =                 3000 /  
   NAXIS2  =                 3000 /  
   CDELT1  =         -3.333333E-4 / 
   CDELT2  =          3.333333E-4 / 
   CRPIX1  =               1500.5 / 
   CRPIX2  =               1500.5 / 
   CTYPE1  = 'RA---TAN'           / 
   CTYPE2  = 'DEC--TAN'           / 
   CRVAL1  =            265.91334 / 
   CRVAL2  =            -29.35778 / 
   CROTA2  =                   0. / 
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4.3. Design of Montage Modules: Flow Charts 

 
      mImgtbl        mProjectExec 

mImgtbl

Read command
line parameters.

Find an input image
in the specified
data directory.

Extract geometry
information from

image header.

Last
image?

Yes

No

End

 
 
 
 
 
 
 

mProjExec

Read command
line parameters.

Get input image
info.

call mProject

Last
image?

Yes

No

End
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mProject

Read command
line parameters.

Read output
header template.

Read input FITS
image.

Determine output
bounding box for
this input image.

Initialize buffers for
output pixels and

areas.

Project input pixels
to output space.

Read a row of
input data.

Pixel = First pixel
in current input row

Project four
"drizzled" corners
of current pixel.

Drizzle?

Yes

Project four corners
of current pixel.

No

Determine overlap
area for each output

pixel

Pixel = Next pixel
in current input row

Last pixel in
current row?

Last row of
input data?

Accumulate flux based
on overlap area for each

output pixel.

No

Yes

End

No

Yes

 
mProject 
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mAdd

Read command
line parameters.

Read an input
image

Accumulate
pixel values.

Last
image?

Yes

No

End

Get output
mosaic specs.

Accumulate
pixel areas.

Normalize output
pixel values by area.

Create output
FITS header.

Write output
FITS image.

 
 

mAdd 
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mOverlaps

Read command
line parameters.

Read an input
image, A.

Last image
A?

Yes

No

End

Read an input
image, B.

Left edge of
A intersects

B?

Right edge of
A intersects

B?

Top edge of
A intersects

B?

Bottom edge
of A intersects

B?

Record "A
intersects B" into

output table.

No

No

No

Last image
B?

No

Yes

No

Yes

Yes

Yes

Yes

Yes

 
mOverlaps 
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mDiffExec

Read command
line parameters.

Call mDiff (A,B)

Last overlap
pair?

Yes

No

Read overlap
pair, A|B

End

    mDiff         mDiffExec 
 

mDiff

Read command
line parameters.

Set pixels outside
region of overlap to

0.

Normalize image data
based on total area

added to each pixel.

End

Calculate difference
image.

Determine region of
overlap between the

two input images.

Create and write
difference image as

FITS file.
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mFitExec

Read command
line parameters.

Get an overlap
differences file.

End

Call mFitPlane

Last
differences

file?

No

Yes

   mFitPlane          mFitExec 
 

mFitPlane

Read command
line parameters.

Least squares fit a
plane through image.

Read image

End
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mBackground

Read command
line parameters.

Remove background
= Ax+By+C  from each

pixel (x,y ).

Create and write
output FITS image.

End

Read input
image.

    mBgModel         mBackground 
 

mBgModel

Read command
line parameters.

Read difference
fit information.

Determine
neighbors for each

image.

N > 0
Yes

No

End

Read image
information.

Determine centers
for each image.

Set N to constant
number of iterations to

find least squares
solution

Calculate best set of
correction planes for
each image in least

squares sense.

Apply correction
planes to each

image.

Decrement N
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mBgExec

Read command
line parameters.

Get input image
info.

Get background
correction info.

Last
image?

Yes

No

End

Call
mBackground

mBgExec 
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4.4. Error Handling Methodology 

 
Montage employs the error handling methodology used by the Infrared Science Archive 
(IRSA), which uses a ‘svc’ library  to fire up external processes as services, to send 
commands and receive structured responses, and to parse those responses to extract 
keyword = value pairs or the value of a particular keyword [6]. The Appendix contains a 
complete list of successful and error return codes module-by-module. 
 
 

5. Montage Operating Under the NVO Architecture 
 
Montage will run operationally on the Teragrid, a high performance computational grid 
provided by the NSF Partnership for Advanced Computational Infrastructure. The 
Teragrid provides aggregate computational power on the order of 10 Teraflops, aggregate 
disk cache on the order of 800 TB and archival storage capacity of 6 Petabytes. The 
details of how NVO compliant processes will be authenticated and fulfilled under the 
Teragrid are under development, but will follow the grid paradigm, where data needed 
for the request are obtained from the most convenient place, and computing is done on 
any available platform where the request can be authenticated.  
 
A request to Montage must be satisfied transparently: users will only be aware that they 
are requesting an image mosaic according to their specification of position, size, 
projection etc. They will not be aware of where the request is performed, or if the image 
can be delivered or subset from a cached file. Figure 3 shows how a request to Montage 
will be handled when the architecture is fully deployed. The request is passed from the 
client to the Request Object Management Environment (ROME).  
 
Broadly speaking, ROME is simply lightweight middleware, built with e-business 
Enterprise Java Bean (EJB) technology, which handles requests, responds to messages 
and manages pools of requests in a fault tolerant fashion [7]. A processing request to 
Montage will be accepted by ROME, which will register the request in the database and 
then send it for processing on the Teragrid. The job will be built on the Teragrid with 
standard Grid technologies such as the Globus, an Open Source toolkit that handles the 
construction and management of Grid processes, secur ity etc.   
 
Part of the request may already be satisfied in cached image mosaics. The cache will 
actually be part of a data management system that subsets files and constructs new 
mosaics from subsets, as needed.  Montage will therefore search through a catalog of 
cached images and will satisfy such parts of the request as it can from the cached images. 
If cached files cannot fill the request, processing on the Teragrid will fill it.  
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Figure 3:  Montage Integrated in the NVO 
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An interpreter (part of grid resources such as Globus) accepts the XML request from 
ROME, and translates it into a suitable computational graph (directed acyclical graph, 
DAG) that specifies the computations that are needed and what data are needed. The 
DAG represents the sequence of computations needed to construct the mosaic from the 
input data. Montage will also perform a spatial search on the image collection metadata 
to find those files needed to fill the request. The data themselves will reside on high-
quality disks, with high throughput I/O to the Teragrid processors that will be used by 
NVO services. 
 
The result of the processing will be conveyed to the user through ROME. The user will 
receive a message that the data are available for pick-up until a deletion date. If the 
request was time intensive, the user may have logged off the portal and decided to wait 
for email notification. If the request could not be processed, ROME will be able to restart 
the job on the user’s behalf. If only some intermediate products could be processed 
before the server failed, ROME will rerun the job, but find the intermediate products and 
use them as inputs. Many other partial processing examples can be handled easily within 
ROME. 
 
 

6. Description of Data Formats and Image Data Collections 

6.1  Flexible Image Transport System and the World Coordinate System 
Montage will support only input and output files containing two-dimensional images that 
adhere to the definition of the Flexible Image Transport System (FITS) standard. FITS is 
the format adopted by the astronomical community for data interchange and archival 
storage [8].   All major astronomical image collections adhere to the FITS standard.   
 
Briefly, FITS is a data format designed to provide a platform-independent means for 
exchange of astronomical data. A FITS data file is composed of a sequence of Header 
Data Units (HDUs). The header consists of “keyword=value” statements, which describe 
the organization of the data in the HDU and the format of the contents. It may provide 
additional information, for example, about instrument status or the history of the data. 
The data follow, structured as the header specifies.   
 
The relationship between the pixel coordinates in the image and sky coordinates on the 
sky is defined by the World Coordinate System (WCS) [9].  Montage will support all the 
map projections supported by WCS. 
 
All information describing the format and data type of the image, and its geometry on the 
sky (including WCS-supported map projection), are defined as header keywords in the 
FITS standard specifications. Montage will use these standard keywords to discover 
information on the format and geometry of an input image, and will use them to convey 
the corresponding information about the output images.   
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6.2   Image Data Collections 

6.2.1 2MASS 

2MASS is a ground-based survey that has imaged the entire sky at 1 arc second 
resolution in three near-infrared wavelengths, 1.25 µm (J Band), 1.65 µm (H Band), and 
2.17 µm (KS Band). Each positionally and photometrically calibrated 2MASS image is 
roughly 2 MB in size and contains 512 x 1,024 pixels covering roughly 0.15 x 0.30 
degrees. The full data set, referred to as the “Atlas” images, contains 4,733, 227 images, 
with a total data volume of a little over 10 TB. A second image data set, called 
“Quicklook” images, is a compressed version of the Atlas data set. The compression 
factor is 20:1, but because the compression is lossy, the Quicklook images are suitable for 
browsing only.  
 

6.2.2 DPOSS 

 
DPOSS has captured nearly the entire northern sky at 1 arc second resolution in three 
wavelengths, 480 nm (J Band - blue), 650 nm (F Band - red), and 850 nm (N Band – 
near-infrared).  The survey data were captured on photographic plates by the 48” Oschin 
Telescope at the Palomar Observatory in California [5].  The total size of the DPOSS data 
accessible by yourSky is roughly 3 TB, stored in over 2,600 overlapping image plates. 
The DPOSS plates are each about 1 GB in size and contain 23,552 x 23,552 pixels 
covering a roughly 6.5 x 6.5 degree region of the sky.   
 

6.2.3 SDSS 
 
SDSS is using a dedicated 2.5 m telescope and a large format CCD camera to obtain 
images of over 10,000 square degrees of high Galactic latitude sky in five broad spectral 
bands (u', g', r', i' and z', centered at 3540, 4770, 6230, 7630, and 9130 Å, respectively). 
The final image data collection is scheduled for public release in July 2006.  An initial 
public release in June 2001 covered about 460 square degrees of sky, and subsequent data 
releases will occur every 18 months or so until the full image collection is released in 
July 2006. This full collection will contain 1 billion Atlas images with a data volume of 
1.5 TB. 
 

6.3       Disposition of the Image Data Collections 

6.3.1 2MASS 
 
Currently, 47% of the 2MASS Image data collection has been released to the public, 
roughly 1.8 million images with a data volume of 4 TB.  The images are stored on the 
High Performance Storage Server (HPSS) at the San Diego Supercomputer Center 
(SDSC), and managed by SDSC’s Storage Resource Broker (SRB). The SRB is a 
scalable client-server system that provides a uniform interface for connecting to 
heterogeneous data resources, transparently manages replicas of data collections, and 
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organizes data into “containers” for efficient access. The yourSky server uses a set of 
client programs called SRB Tools to access selected 2MASS plates in batch mode from 
the SRB, and the same client is adequate to support development of Montage. 
 
As part of the NVO project, SDSC will replicate the 2MASS data on spinning disk there 
and via SRB to a mirrored HPSS system at CACR.  The schedule has to be determined, 
but it is anticipated that the replication can be performed before the end of December 
2002. 
 

6.3.2 DPOSS 

The DPOSS data are currently replicated on the HPSS system at CACR. SDSC has 
committed to replicating the data at SDSC for processing under the NVO. 
 

6.3.3 SDSS 

The publicly released SDSS images are currently served from the SDSS archive at the 
MultiMission Archive at Space Telescope (MAST), where they reside on spinning disk. 
Our intention is to replicate the public data on spinning disk at SDSC. SDSS has 
informally agreed to this plan, but a formal agreement has yet to be put in place. This 
agreement will be negotiated by the NVO project. 
 

7 Montage Design and Use Cases 
This section demonstrates how the flexible and modular design of Montage supports the 
Science Use Cases described in the Software Engineering Plan [2]. 
 
Use Case I - Science Analysis 
 
The SIRTF First Look ancillary VLA image is a 2x2 degree radio image of a field that 
will be observed by SIRTF. As a field uncluttered by galactic radiation in SIRTF’s 
continuous viewing zone, it is a prime candidate for deep imaging of extragalactic 
sources. The VLA image contains many radio “blobs,” many of which appear to be 
interesting and perhaps bizarre objects.  Interpretation of these objects requires multi-
wavelength measurements on a common projection and spatial scale. DPOSS, SDSS and 
2MASS provide the broad wavelength base for analysis of these objects, yet analysis is 
tedious and error prone because the images delivered by these projects have different 
spatial resolutions, coordinates and projections. MONTAGE will eliminate these 
difficulties by delivering mosaics from these data sets at a common resolution, projection 
and in a common coordinate system. 
 
This is a basic small region mosaic problem and can be run on a single workstation or 
collection of workstations.  Since the comparison will be with the VLA image, the 
mosaic should be constructed using the same projection and scale.   The processing steps 
could in fact be run manually and would be as follows: 
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• Extract FITS header from VLA image 
• Identify 2MASS (or whatever) images for the region and collect the images if 

running this in the standalone (i.e. non-GRID) mode.  There are IRSA web 
services to do this in the case of the 2MASS images and we expect similar 
services to be available for the other datasets at some future date. 

• Using the FITS header, reproject each of the input images to the new system 
using mProject for each one individually or mProjExec to process them all in a 
loop (based on a summary list prepared by mImgtbl).   This step takes by far the 
majority of the time. 

• Since this is a small region, the user will probably opt to have a custom 
background correction fit made.  The first step in this is to determine exactly 
which image overlap, using mOverlaps  acting on a summary metadata table for 
the reprojected images (again prepared by mImgtbl). 

• mDiff is then used to actually generate the difference images for the overlapping 
pairs identified in the last step.  This is usually run in a loop by mDiffExec using 
the table output by mOverlaps . 

• mFitplane  characterizes each difference image by a least-squares fit plane 
(excluding flux outlier pixels).  This is usually run in a loop using mFitExec, 
which works off the table prepared by mOverlaps .  The results go into a table 
used in the next step. 

• mBgModel iteratively fits the table generated by mFitplane /mFitExec and 
determines the “best” background to remove from each of the original reprojected 
images. 

• The final step in the background correction process is to apply the corrections to 
the images. This is done using mBackground on each image (usually by way of 
mBgExec looping over the table generated by mBgModel). 

• These corrected/reprojected images can now be coadded into the final mosaic 
using mAdd (again using a summary metadata table for the corrected images 
prepared by mImgtbl). 

 
 
 
 
Use Case II – Observation Planning 
 
The Multiband Imaging Photometer (MIPS) aboard the Space Infra Red Telescope 
Facility (http://sirtf.caltech.edu/SSC/MIPS/mips_intro.html) has a scan length of 0.5°. 
Observations with MIPS must avoid bright sources that will saturate the detector, and is 
normally done by identifying infrared sources on 2MASS images. This is at present 
difficult to do because the 2MASS images are 512 x 1024 arcsec on a side and the effects 
of background variation from image to image complicate identification of sources in a 
consistent way.  Mosaics of 2MASS images that have a flat background (not necessarily 
science grade) will make the task of identifying bright sources much easier to perform. 
 
Here the need is for a global mosaic of the entire 2MASS dataset.  While the scenario in 
Use Case I still applies, the processing is operationally quite different.  Here, the entire 
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2MASS dataset should be reprojected into a regular pattern of large image outlines 
covering the sky, on the order of 5-10 degrees in scale.  The overlap analysis and 
background fitting should be done once globally (or in a hierarchical local/global way) 
and the correction parameters for all 2MASS images stored in a permanent public 
database. 
 
Since this would be done using GRID resources, the parallelization inherent in the 
architecture can be exploited to the maximum.  Rather than use mProjExec, all the re-
projection jobs can be added to a pool of tasks and performed by as many processors as 
are available.  The same is true of the other “list driven” processes above (mDiffExec, 
mFitExec, mBgExec).  The precise methodology to be used is TBD but will be built 
using standard GRID programming toolkits (Globus, Condor, DAGMAN, etc). The Users 
Guide delivered with the Montage software will give full details on how users can apply 
these grid resources. 
 
Requests for mosaics of a specific location could then be satisfied by simply background 
subtracting (mBackground) and co-adding (mAdd) the already reprojected images 
(which would be kept permanently).  There would also probably be standard “products”; 
images on the plate scale defined above covering the whole sky.  
 
 If a custom projection was desired, the original images would probably be used (to avoid 
losses due to repeated projection), re-projecting (mProject) them as desired but using the 
“standard” background correction parameters from the database instead of the 
background modeling described above. 
 
Use Case III – Science Product Generation 
 
The Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) will use the 
Space Infra Red Telescope Facility (SIRTF) Infra Red Array Camera (IRAC) 
(http://sirtf.caltech.edu/SSC/IRAC/SSC_B4.html) to survey approximately 220 square 
degrees of the Galactic plane, covering a latitude range of ± 1°, and a longitude range of 
abs(l)=10-65 °. GLIMPSE will be a confusion-limited survey of the Galactic Plane 
(approximately 300 µJy) in the four IRAC bands.  The survey will produce several 
hundred GB of data in the form of catalogs and images, which will be delivered to the 
SIRTF Science Center for dissemination to the entire astronomical community.  The 
GLIMPSE project requires a mosaic engine that is portable, uses only standard 
astronomy packages, is highly scaleable and is easy to fine-tune. These are the goals of 
Montage, which is therefore a serious candidate for GLIMPSE processing. 
 
In this case, the input data set is not one of the data sets being used for Montage 
development and testing and the processing will be run on a custom cluster of processing 
engines (using home-grown pipeline executive code).  The Montage modules are meant 
to be flexible enough to accommodate any FITS image, so the same paradigm as 
described in Use Case I should work.  Here, however, the user would probably opt for 
writing their own executive logic rather than using the mProjExec, mDiffExec, 
mFitExec, and mBgExec modules (which are simple constructs in any case) and manage 
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parallelization themselves (or using off-the-shelf tools such as Condor).  Only the 
executive logic needs customization: the processing modules will be used as delivered.  
The Montage User’s Guide will give a complete description of how users can build their 
own executives. 
 
 
Use Case IV – Outreach 
 
Large-scale image mosaics are useful in promoting general interest in infrared 
astronomy through their use in local image galleries as well as the development of 
posters, pamphlets, and other media for both the general public and educators. Mosaics 
showing data at multiple wavelengths on a common projection, spatial scales etc exert a 
powerful influence on the imagination, especially when made part of a larger permanent 
display at a museum or planetarium. Access to Montage will allow production of large 
scale images from multiple data sets that would otherwise be very labor-intensive to 
accomplish. 
 
Since such images will need to be on a common scale, much the same processing should 
be used as in Use Case I.  Not all of these images will be mosaics, however.  Some will 
be simple re-projections of existing images to put them all on the same scale.  This can be 
done by running them individually through mProject. 
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Acronyms 
 

2MASS Two Micron All Sky Survey 
  
ANSI American National Standards Institute 
ASCII American Standard Code for Information Interchange 
  
CACR Center for Advanced Computing Research 
CCD Charge Coupled Device 
  
DAG Directed Acyclical Graph 
DBMS DataBase Management System 
DPOSS Digital Palomar Observatory Sky Survey 
  
EJB Enterpris e Java Beans 
  
FITS Flexible Image Transport System 
  
GB Giga Byte 
GLIMPSE Galactic Legacy Infrared Midplane Survey Extraordinaire 
GNU Gnu’s Not Unix 
  
HEASARC High Energy Astrophysics Science ARChive 
HDU Header Data Unit 
  
IDE Interactive Development Environment 
IPAC Infrared Processing and Analysis Center 
IPG Information Power Grid 
IRSA InfraRed Science Archive 
IRAC InfraRed Array Camera 
  
JPL Jet Propulsion Laboratory 
  
MIPS  Multiband Infrared Photometer for SIRTF 
  
NVO National Virtual Observatory 
  
OASIS  On-Line Archive Science Information Services 
  
SAO Smithsonian Astrophysical Observatory 
SDSC San Diego Supercomputer Center 
SDSS Sloan Digital Sky Survey 
SIRTF Space Infrared Telescope Facility 
SRB Storage Resource Broker 
STScI Space Telescope Science Institute 
  
TBD To Be Decided 
  
VLA Very Large Array 
  
WCS World Coordinate System 
  
XML eXtensible Markup Language 
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Appendix: Montage Return Codes 
 

A1.  Montage Successful Completion Codes 
 
All Montage program return a success message upon normal completion. In addition to 
the "OK" status, most also return useful information (in the case of mFitPlane data tha t 
needs to written to a file as later background modelling input). 
 
The return 'types' are indicated by “C printf() syntax” (e.g. %d for an integer). 
 
 

Table A1:  Montage Successful Completion Codes 
 
 

Module Completion Code  1 
mAdd.c [struct stat="OK", time=%d] 
mBackground.c [struct stat="OK"] 
mBgExec.c [struct stat="OK", count=%d, failed=%d] 
mBgModel.c [struct stat="OK"] 
mDiff.c [struct stat="OK"] 
mDiffExec.c [struct stat="OK", count=%d, failed=%d] 
mFitExec.c [struct stat="OK", count=%d, failed=%d] 
mFitplane.c [struct stat="OK", a=%-g, b=%-g, c=%-g, xmin=%-g, 

xmax=%-g, ymin=%-g, ymax=%-g, xcenter=%-g, 
ycenter=%-g, rms=%-g]2 
 

mImgtbl.c [struct stat="OK", count=%d] 
mMakeHdr.c [struct stat="OK", count=%d] 
mOverlaps.c [struct stat="OK", count=%d] 
mProjExec.c [struct stat="OK", count=%d, failed=%d] 
 
 
1 Key to fields in return messages: 
 
 
time The execution time in seconds 

 
count The number of images (or overlap area) processed or identified. 

 
failed When processing image lists using Exec programs gives the number that 

failed for whatever reason (the reason  is given by the return message of 
the exec-ed program). 
 

noverlap For mProjExec; the number of input images that did not overlap the 
region of interest. 
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 2 The return parameters for mFitplane represent the plane fit to the data: 
 
      plane value = a*(x-xcenter) + b*(y-ycenter) + c   
 
where x and y are measured relative to xcenter, ycenter.  The parameters  
xmin, xmax, ymin, ymax give the range of pixels with data values since  
images usually have some 'blank' (NaN) values.  The data RMS after of  
the fit is given by the parameter rms. 
 
A2. Montage Error Return Codes 
 
Whenever a processing error occurs, all Montage services return error codes to stdout 
immediately before exiting .  These errors trap conditions from incorrect input arguments 
to usage reminders to diagnostics on input data formats to I/O errors due to file 
permissions or disk space. 
 
Table A2 gives a complete list of all error codes, module by module. Most messages are 
self explanatory.  As with all such structured messages, all the text is returned on one 
line, though we have added new lines to improve readability where necessary. 
 
All error returns contain a "msg" parameter; some include a FITs library 
error code (integer); and messages  referring  to files, often include the file name. 
 
 
Table A2:  Complete listing of Montage error codes module-by-module 
 
mAdd 
[struct stat="ERROR", msg="Usage: mAdd images.tbl out.fits  
                              template.hdr [-d(ebug) level]"] 
[struct stat="ERROR", msg="Need columns: cntr, fname in image list"] 
 
[struct stat="ERROR", status=%d, msg="%s"]  (FITS library status code 
and message) 
[struct stat="ERROR", msg="Template file not found"] 
[struct stat="ERROR", msg="All pixels are blank."] 
 
 
mBackground 
[struct stat="ERROR", msg="Usage: mBackground in.fits out.fits A B C  
                              xcenter ycenter [-d(ebug) level]"] 
 
[struct stat="ERROR", status=%d, msg="%s"]  (FITS library status code 
and message) 
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mBgExec 
[struct stat="ERROR", msg="Usage: mBgExec images.tbl corrections.tbl  
                              corrdir [-d]"] 
[struct stat="ERROR", msg="Need columns: cntr,fname in image list"] 
 
[struct stat="ERROR", msg="Need columns: id,a,b,c,xcenter,ycenter  
                              in corrections file"] 
 
 
 
MBgModel 
[struct stat="ERROR", msg="Usage: mBgModel images.tbl fits.tbl  
 corrections.tbl [-iteration niter] [-d(ebug) level]"] 
 
[struct stat="ERROR", msg="Failed to open output %s"]   (output file 
name) 
[struct stat="ERROR", msg="Need columns: cntr nl ns crpix1 crpix2 in 
image info file"] 
[struct stat="ERROR", msg="Need columns: plus minus a b c xmin xmax  
                              ymin ymax xcenter ycenter"] 
[struct stat="ERROR" msg="Singular Matrix-1"]  (Messages from matrix 
inversion routines) 
[struct stat="ERROR" msg="Singular Matrix-2"] 
[struct stat="ERROR" msg="Allocation failure in ivector()"] 
 
 
 
 
mDiff 
[struct stat="ERROR", msg="Usage: mDiff in1.fits in2.fits out.fits  
                              hdr.template [-d(ebug) level]"] 
 
[struct stat="ERROR", status=%d, msg="%s"]  (FITS library status code 
and message) 
[struct stat="ERROR", msg="Template file not found."] 
[struct stat="ERROR", msg="All pixels are blank."] 
 
 
mDiffExec 
[struct stat="ERROR", msg="Usage: mDiffExec diffs.tbl template.hdr 
[diffdir] [-d]"] 
 
[struct stat="ERROR", msg="Need columns: cntr1 cntr2 plus minus diff"] 
 
 
mFitExec 
[struct stat="ERROR", msg="Usage: mFitExec diffs.tbl fits.tbl [diffdir] 
[-d]"] 
 
[struct stat="ERROR", msg="Can't open output file."] 
struct stat="ERROR", msg="Need columns: cntr1 cntr2 plus minus diff"] 
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mFitPlane 
[struct stat="ERROR", msg="Usage: mFitPlane in.fits [-d(ebug) level]"] 
[struct stat="ERROR", status=%d, msg="%s"]  (FITS library status code 
and message) 
[struct stat="ERROR" msg="Singular Matrix-1"]  (Messages from matrix 
inversion routines) 
[struct stat="ERROR" msg="Singular Matrix-2"] 
 
 
mImbtbl 
[struct stat="ERROR", msg="Usage: mImgtbl directory images.tbl [-
d(ebug)]"] 
[struct stat="ERROR", msg="Can't open output table."] 
 
[struct stat="ERROR", msg="Can't open copy table."] 
 
[struct stat="ERROR", msg="Can't open tmp (in) table."] 
 
[struct stat="ERROR", msg="Can't open tmp (out) table."] 
 
[struct stat="ERROR", msg="Can't open final table."] 
 
 
 
mOverlaps 
[struct stat="ERROR", msg="Usage: mOverlaps images.tbl diffs.tbl [-
d(ebug) level]"] 
[struct stat="ERROR", msg="Failed to open output %s"] 
[struct stat="ERROR", msg="Need columns: cntr ctype1 ctype2 nl ns 
crval1 crval2 crpix1 crpix2 cdelt1 cdelt2 crota2 fname (equinox 
optional)"] 
 
[struct stat="ERROR", msg="Bad WCS for image %d"]  (record number in 
images.tbl) 
 
 
MProjExec 
[struct stat="ERROR", msg="Usage: mProjExec images.tbl template.hdr  
                              projdir stats.tbl [-d]"] 
[struct stat="ERROR", msg="Can't open output file."] 
[struct stat="ERROR", msg="Need column fname in input"] 
 
 
mProject 
[struct stat="ERROR", msg="Usage: mProject in.fits out.fits 
hdr.template [-drizzle factor][-d(ebug) level][-i(nrefpix) ypix xpix] 
[-o(utrefpix) ypix xpix]"] 
[struct stat="ERROR", msg="No overlap"] 
[struct stat="ERROR", msg="Output wcsinit() failed."] 
[struct stat="ERROR", msg="Input wcsinit() failed."] 
[struct stat="ERROR", status=%d, msg="%s"]  (FITS library status code 
and message) 
[struct stat="ERROR", msg="Template file not found."] 
[struct stat="ERROR", msg="All pixels are blank."] 
 


