
 1

Software Design Specification for

MONTAGE
An Astronomical Image Mosaic Service for the National

Virtual Observatory

Version 1.1 (November 18, 2002): Detailed Design

This Document is based on the template
CxTemp_SoftwareDesignSpecification.doc (Draft X; August 9, 2002),

released by Construx Software (www.construx.com)

 2

MONTAGE DESIGN REVISION HISTORY

Description of Revision Date
Detailed Design: add algorithm description, flow charts,

interface specification, error handling methodology, and all
success and error return codes; revised block diagrams of

Montage design & process flow – Version 1.1

November 18, 2002

Initial Design – Version 1.0 August 9, 2002

 3

Table of Contents

1 Introduction.. 4
1.1 Purpose of this Document .. 4
1.2 Schedule for Delivery of Software Design Specification for Montage.. 4
1.3 Supporting Materials ... 5

2 Design Considerations... 5
2.1 Drivers and Constraints .. 5
2.2 Use of Open Source Software .. 6
2.3 Portability of Montage Software ... 6
2.4 System Environment ... 7

3 High-Level Architecture and Computational Algorithms ... 7
3.1 High Level Design of Montage... 7
3.2 Computational Algorithms in Montage ... 9

3.2.1 Image Reprojections and Pixel Overlap.. 9
3.2.2 Background Modeling and Rectification .. 12
3.2.3 Coadditions and Weighting of Output Pixel Fluxes.. 12
3.2.4 Parallelization .. 13

4. Detailed Design of Montage... 14
4.1. Interface Specifications ... 14
4.2. Definitions of Montage File Formats .. 21

4.2.1. ASCII Table formats & the images.tbl file ... 21
4.2.2. The Template.hdr file ... 22

4.3. Design of Montage Modules: Flow Charts .. 23
4.4. Error Handling Methodology ... 31

5. Montage Operating Under the NVO Architecture .. 31
6. Description of Data Formats and Image Data Collections.. 33

6.1 Flexible Image Transport System and the World Coordinate System.. 33
6.2 Image Data Collections... 34

6.2.1 2MASS.. 34
6.2.2 DPOSS.. 34
6.2.3 SDSS ... 34

6.3 Disposition of the Image Data Collections.. 34
6.3.1 2MASS.. 34
6.3.2 DPOSS.. 35
6.3.3 SDSS ... 35

7 Montage Design and Use Cases... 35
References... 39
Acronyms .. 40
Appendix: Montage Return Codes.. 41

A1. Montage Successful Completion Codes ... 41
A2. Montage Error Return Codes... 42

 4

1 Introduction

1.1 Purpose of this Document
This document describes the design of Montage, an astronomical image mosaic service
for the National Virtual Observatory. It will deliver on demand science-grade
astronomical image mosaics that satisfy user-specified parameters of projection,
coordinates, size, rotation and spatial sampling. Science-grade in this context means that
the impact of the removal of terrestrial and instrumental backgrounds on the fidelity of
the data is understood and removed over different spatial scales. The service will deliver
mosaics of images released by the 2 Micron All Sky Survey (2MASS), the Digital
Palomar Sky Survey (DPOSS) and Sloan Digital Sky Survey (SDSS) projects.

Montage will run operationally on the TeraGrid, (http://www.npaci.edu/teragrid/). Users
will submit requests to Montage through existing astronomical portals, and visualize and
interact with the delivered mosaics through these same portals .

A fully documented, portable version of the software will be publicly available for
running on local clusters and individual workstations. The compute engine will be quite
general and will allow users to build mosaics from their own data.

1.2 Schedule for Delivery of Software Design Specification for
Montage

The complete design specification of Montage will contain a description of

• design considerations

• overall architectural, “high- level” design

• how the high- level design satisfies the science requirements and use cases.

• Interface specifications (“Application Programmers Interface”)

• Low level design, including error handling strategies and algorithms implemented by
the system

The complete design specification will be delivered incrementally over several releases
of this document, according to the schedule described in Table 1. The Montage project
aims to deliver a complete, initial design specification before the first public release of
the system (February 28, 2003) and will then provide updates thereafter for subsequent
releases. We anticipate that the design updates are incremental and will largely
accommodate customers’ requests for functionality.

 5

Table 1: Schedule for Major Releases of Software Design Specification
of Montage

SDS
Version

Release Date Montage
Version

(Release Date)

SDS Contents

1.0 6/30/2002 1.0.0

(2/28/2003)

Design considerations

Overall architecture

Application of design to use cases

1.1 11/18/2002 1.1.0

(2/28/2003)

Design considerations

Overall architecture

Application of design to use cases

Interface Specifications

Low level design, incl. algorithms and
error handling strategies

2.0 8/30/2003 2.0.0

(2/28/2004)

Updates to 1.x as needed

3.0 8/30/2004 3.0.0

(1/10/2005)

Updates to 2.x as needed

1.3 Supporting Materials
Montage will be developed according to the style guidelines in
http://www.construx.com/survivalguide/ ->Coding Standard

2 Design Considerations

2.1 Drivers and Constraints

The drivers and constraints governing the design of Montage are made clear in the
requirements document [1] and in the Software Engineering Plan [2]. The most important
drivers and constraints are as follows:

• Montage will be able to build small mosaics on a user’s Linux laptop and be able to

process many simultaneous, large requests on the TeraGrid. It must therefore be

 6

written to ensure portability, and make use of common tools and libraries that exist on
all widely-used platforms.

• Montage must be a general service, capable of generating image mosaics according to

user-specified size, rotation, projection and coordinate system.

• Montage must permit exercising the processing steps manually, and must deliver

intermediate products, such as re-projected images, as science products in their own
right.

• Montage must permit, without modification to the code, correction for background

radiation with parameters derived from correction algorithms supplied by data
providers, and for background corrections with user-supplied parameters.

• Montage has strict performance requirements, and must be scaleable. It must deliver

custom mosaics from 2MASS, DPOSS and SDSS with sustained throughput of 30
square degrees (e.g. thirty 1 degree x 1 degree mosaics, one 5.4 degrees x 5.4 degrees
mosaic, etc.) per minute on a 1024x400Mhz R12K Processor Origin 3000 or machine
equivalent with a sustained bandwidth to disk of 160 MB/sec.

2.2 Use of Open Source Software
Montage will use a small set of standard open-source astronomical libraries for reading
Flexible Image Transport System (FITS) image files, performing coordinate system
transformations, and handling image projection/de-projection operations. These libraries
are portable and well-tested, and a current version will be delivered with all releases of
Montage. The libraries are:

Library Description Current Release Origin
CFITSIO FITS reader Version 2.300 HEASARC
WCSTools Image projection Version 3.0.5 SAO
Coord Coordinate

transformation
Version 1.2 IRSA

2.3 Portability of Montage Software
To ensure maximal portability and use of Montage, it will not use shared-memory,
specific DBMS interfaces, or platform-specific libraries, and it will minimize its use of
memory (as long as it does not compromise the quality and range of the algorithm).
Ancillary information, such as tables of information on the collection of images that are
being processed, will be captured in simple text files that can be parsed by any computer.

Montage will be constructed to operate entirely from command-line arguments, using the
ancillary files describe above to communicate other information needed to process a
request.

 7

Montage will be developed in ANSI-standard C. It will be guaranteed to compile with
GNU gcc and to build with GNU gmake. Other compilers and IDE’s will almost
certainly work just as well, though we make no guarantees about testing such and will
only do so as resources permit.

Montage will be built on several UNIX platforms, including but not limited to Solaris,
AIX, and Linux. It will of course be tested and run operationally on the TeraGrid. We
will formally test Montage on IRIX only as resources permit.

2.4 System Environment
Montage should run on the following platforms and Operating Systems:

Machine OS
TeraGrid (Operations) Red Hat Linux 6.2
IBM Blue Horizon AIX 5L
Linux Cluster Red Hat Linux 6.2
IPG SGI O2K, O3K IRIX 6.5.x
Solaris Workstations Solaris 2.7, 2.8
Linux workstations Red Hat Linux 6.2, 7.x

3 High-Level Architecture and Computational Algorithms

3.1 High Level Design of Montage
Processing a request for an image mosaic consists of three main steps

• re-projection of input images to a common spatial scale, coordinate system and World

Coordinate System (WCS) projection;
• modeling of background radiation in images to achieve common flux scales and

background level;
• rectification of images to a common flux scale and background level; and
• co-addition of re-projected, background-corrected images into a final mosaic.

To accomplish these requests, Montage will consist of the following independent but
interoperable components, illustrated in the block diagram in Figure 1:

• A compute engine that performs all re-projection and co-addition of input.
• A background modeling engine that globally minimize the inter- image differences.
• A background rectification engine that removes background and instrumental

radiation from the images.
• An image coaddition engine that calculates weighted averages of pixel fluxes in the

final mosaic.

 8

Figure 1: Design Components of Montage – High Level Design.
Montage performs three principal functions in generating an image
mosaic, and the components of each are illustrated here. They are
image reprojection, background modeling, background rectification,
and image coaddition.

 9

The components can be called separately or in tandem. Figure 2 shows an overview of
the process flow in Montage. Essentially all requests will call the reprojection and co-
addition engines. These engines will process all the input images, generate custom
images according to the user’s specification of coordinates, sampling and projection, and
co-add the fluxes in the output images.

Calls to the background modeling and rectification engines are made if requested by the
user. Background modeling and rectification involves fitting the differences between
overlapping images on a local (for small mosaics) or global scale and determining the
parameters for smooth surfaces to be subtracted from each image to bring them to the
common scale. These parameters can either be determined on the fly or done once and
saved in a database for any future mosaics done with the same images.

The advantage of the former is that it allows variations in the fitting algorithms to deal
with the special cases and, for small regions, will probably be more sensitive to local
variations than a global fit. The advantage of the latter is that it provides a uniform view
of the sky and a tested “best fit” that can be certified as such by the project.

Our design allows us to use both approaches. We will derive and store in a relational
DBMS at least one set of background fit parameters for the whole sky, based on
algorithms supplied by the providers of the image collections, but allowing the user the
option to invoke custom background processing if they think it will provide a better
mosaic for a local region. SDSC is committed to providing a DBMS for NVO-related
processing, but the choice of engine is TBD.

3.2 Computational Algorithms in Montage

This section describes the innovations in computational algorithms developed to support
the design of Montage.

3.2.1 Image Reprojections and Pixel Overlap

Image reprojection involves the redistribution of information from a set of input pixels to
a set of output pixels. For astronomical data, the input pixels represent the total energy
received from an area on the sky, and it is critical to preserve this information when
redistributed into output pixels. Also in astronomy, it is important to preserve the
positional (astrometric) accuracy of the energy distribution, so common techniques such
as adding all the energy from an input pixel to the "nearest" output pixel are inadequate.

 10

mOverlaps

mBgModel

Image Projection Image Coaddition

Overlap Difference
Image Generation

Difference Fitting

Mosaic

Background Modelling (optional)

Reprojection and Coaddition

Background Correction

MONTAGE

mFitplane

mFitExec

P
ro

je
ct

ed
 I

m
ag

es

Background Rectification (optional)

Overlap
Analysis

Background
Modelling

mProjExec

mProject

P
ro

je
ct

ed
 I

m
ag

es

(c
or

re
ct

ed
)

mBackground

mBgExec

P
ro

je
ct

ed
 I

m
ag

es

A
rc

hi
ve

 I
m

ag
es

mAdd

Process Flow Overview
Broad arrows indicate parallelization

P
ro

je
ct

ed
 I

m
ag

es

mDiff

mDiffExec

D
iff

er
en

ce
 I

m
ag

es

Figure 2: Design Components of Montage - Process Flow Overview.

 11

Instead, we must redistribute input pixel energy to the output based on the exact overlap
of these pixels, possibly even with a weighting function across the pixels based on the
point spread function for the original instrument. The goal is to create an output image
which is as close as possible to that which would have been created if the sky had been
observed using an instrument with the output image's pixel pattern. We are also
committed to building a system which handles all astronomical projections and
coordinate systems equally well.

The most common approach to determining pixel overlap is to project the input pixel into
the output pixel Cartesian space. This works well for some projection transformations
but is difficult for others. One example of a difficult transformation is the Aitoff
projection, commonly used in astronomy, where locations at the edge of an image
correspond to undefined locations in pixel space. For Montage, we have decided instead
to project both input and output pixels onto the celestial sphere. Since all such "forward"
projections are well defined, the rest of the problem reduces to calculating the area of
overlap of two convex polygons on a sphere (with no further consideration of the
projections involved). The issue of handling reprojections therefore becomes a problem
of classical spherical trigonometry.

General algorithms exist for determining the overlap of polygons in Cartesian space [3]
We have modified this approach for use in spherical coordinates to determine the
intersection polygon on the sphere (a convex hull) and applied Girard's Theorem [4],
which gives the area of a spherical triangle based on the interior angles, to calculate the
polygon's area.

The result is that for any two overlapping pixels, we can determine the area of the sky
from the input pixel that contributes energy to the output pixel. This provides not only a
mechanism for accurately distributing input energy to output pixels but, as we shall see, a
natural weighting mechanism when combining overlapping images.

Our approach implicitly assumes that the polygon defining a single pixel can be
approximated by the set of great circle segments connecting the pixel's corners. Since
even the largest pixels in any realistic image are on the order of a degree across, the non-
linearities along a pixel edge are insignificant. Furthermore, the only affect this would
have would be to the astrometric accuracy of the energy location information and would
amount to a very small fraction (typically less that 0.01) of the size of a pixel. Total
energy is still conserved.

The Montage processing scheme is a natural fit with the "drizzle" algorithm developed by
STScI [5]. Simply, that algorithm shrinks each input pixel's size linearly toward its
center (a square pixel one arcsecond on a side becomes a square pixel a fraction of an
arcsecond in size with the same center) before it is reprojected and its flux redistributed
to the output pixels. In Montage, this means simply computing different corners in the
input linear pixel space; the flux redistribution and appropriate area-based normalization

 12

are handled naturally by the basic Montage algorithms. There is a slight impact on
processing speed since all four pixel corners must be calculated for all pixels (in the non-
drizzle case there is some saving because pixels share corners). For this reason, "drizzle"
has been implemented in Montage from its inception.

3.2.2 Background Modeling and Rectification

If several images are to be combined into a mosaic, they must all be projected onto a
common coordinate system (see above) and then any discrepancies in brightness or
background must be removed. Our assumption is that the input images are all calibrated
to an absolute energy scale (i.e. brightnesses are absolute and should not be modified)
and that any discrepencies between the images are due to variations in their background
levels that are terrestrial or instrumental in origin.

The Montage background matching algorithm is based on the assumption that terrestrial
and instrumental backgrounds can be described by simple functions or surfaces (e.g.
slopes and offsets). Stated more generally, we assume that the "non-sky" background has
very little energy in any but the lowest spatial frequencies. If this not the case, it is
unlikely that any generalized background matching algorithm will be able distinguish
between "sky" and rapidly varying "background"; background removal will then require
an approach that depend on a detailed knowledge of an individual data set.

Given a set of overlapping images, characterization of the overlap differences is key to
determining how each image should be adjusted before combining them. We take the
approach of considering each image individually with respect to it neighbors.
Specifically, we determine the areas of overlap between each image and its neighbors,
and use the complete set of overlap pixels in a least-squares fit to determine how each
image should be adjusted (e.g. what gradient and offset should be added) to bring it
"best" in line with it neighbors.

In practice, we only adjust the image by half this amount, since all the neighbors are also
being analyzed and adjusted and we want to avoid ringing in the algorithm. After doing
this for all the images, we iterate (currently for a fixed number of times though we may
later introduce convergence criteria). The final effect is to have subtracted a low-
frequency (currently a gradient/offset) background from each image in such a way that
the cumulative image-to-image differences are minimized. To speed the computation
(and minimize memory usage), we approximate the gradient and offset values by a planar
surface fit to the overlap area difference images rather than perform a least squares fit.

3.2.3 Coadditions and Weighting of Output Pixel Fluxes

In the reprojection algorithm (described in the pixel overlap discussion above), each input
pixel's energy contribution to an output pixel is added to that pixel (weighted by the sky
area of the overlap). In addition, a cumulative sum of these sky area contributions is kept
for the output pixels (essentially and physically an "area" image).

 13

Such images are in practice very flat (with only slight slopes due to the image projection)
since cumulative affect is that each output pixel is covered but the same amount of input
area, regardless of the pattern of coverage. The only real variation occurs at the edges
of the area covered since there an output pixel may be fractionally covered by input
pixels.

When combining multiple overlapping images, these area images provide a natural
weighting function; the output pixel value being the area-weighted average of the images
being combined.

3.2.4 Parallelization

The first released code (to which this document applies) is intended to run on a single
processor. Nevertheless, we can make some remarks on how the design supports
parallelization. The basic Montage scenario is to reproject each of the input images to a
common output specification (producing reprojected image/area files), analyze the
background by determining the overlap pairs, calculate and fit the difference images, and
model the background corrections, subtract this model from the reprojected images, and
finally perform a weighted coaddition to generate the final mosaic.

The only place in this scenario where there is more than pairwise cross-talk between the
images is the background modeling. All the other steps can easily be parallelized across
multiple processing threads or even multiple machines.

The reprojection of each image takes by far the majority of the processing time; the
reprojection can be performed independently for each image, even though each image
uses the same output area definition. In fact, given the area weighting approach we use,
the reprojection of an individual image could be parallelized across multiple threads
through a simple tiling. Similarly, once the image/image overlaps are identified (a fast
process) the difference image processing can be spread out in the same way.

While the final coaddition nominally feeds into a single output memory array, it too can
be parallelized by tiling (the output space), though this is rarely necessary as the
coaddition step is very fast.

This leaves only the background modeling as a linear process. While this cannot be
subdivided along the lines of the other steps, it would be feasible to parallelize this in a
more complex way (e.g. blocking the images into regional groups and using the Message
Passing Interface to manage the intergroup cross-talk). However, this process is unlikely
to ever be a primary time sink so this will probably not be necessary.

 14

4. Detailed Design of Montage

4.1. Interface Specifications
For Montage internal testing and error diagnosis, all programs can take a "-d(ebug) level"
argument where 'level' is an integer denoting the detail of debugging output generated.
For some programs this is just an on/off flag, for others it can have a value as high as 4.
This debugging output will most likely be unavailable in the released code.

mImgtbl

Description
Extracts the FITS header geometry information from a set of files and creates an ASCII image metadata
table from it used by several of the other programs.

Syntax: mImgtbl <directory> <images.tbl>

Input Datatype Description
<directory> char directory to be searched for FITS files
Output Description

<images.tbl> char Column -delimited ASCII table file containing FITS file
information on the geometry of each image on the sky.

 15

mProject

Description
Reprojects a single image to the scale defined in a FITS –style header template file. Actually produces
a pair of images: the reprojected image and an “area” image consisting of the fraction input pixel sky
area that went into each output pixel. The “drizzle” algorithm is implemented. The algorithm proceeds
by mapping pixel corners (as adjusted by drizzle, if called) from the input pixel space to the output pixel
space, calculating overlap area with each output pixel, and accumulating an appropriate fraction of the
input flux into the output image pixels. In addition, the appropriate fraction of the input pixel area is
accumulated into the area image pixels. Projection of points from input pixel space to output pixel
space is calculated in two steps: first map from input pixel space to sky coordinates; second map from
sky coordinates to output pixel space.

Syntax: mProject <in.fits> <out.fits> <template.hdr> [-drizzle
<factor>]

Input Datatype Description
<in.fits> char <in.fits> is the FITS image to be re-projected
[-drizzle<factor>] Real*4 Invokes the STScI “drizzle” algorithm
Output Description

<out.fits> char Output reprojected FITS file
<template.hdr> char Column delimited ASCII file containing the lines to be

used to create the output FITS header.

mProjectExec

Description
A simple executive that runs mProject for each image in an image metadata table.

Syntax
mProjExec <images.tbl> <template.hdr> <directory> <stats.tbl>

Input Datatype Description
<images.tbl> char ASCII table created by mImgtbl
<template.hdr> char Column delimited ASCII file containing the lines to be used

to create the output FITS header.
Output Description

<directory> char Location where the reprojected images will be stored
<stats.tbl> char ASCII runtime log of the processing of the individual images

 16

mAdd

Description
Coadd the reprojected images using the same FITS header template and working from the same
mImgtbl list. Both pixel values and pixel areas are accumulated

Syntax
mAdd <images.tbl> <template.hdr><mosaic.fits>

Input Datatype Description
<images.tbl> char ASCII table created by mImgtbl
<template.hdr> char Column delimited ASCII file containing the lines to be used to

create the output FITS header.
Output Description

<mosaic.fits> char Final co-added mosaic in FITS format

mOverlaps

Description
Analyze an image metadata table to determine a list of overlapping images. Each image is compared
with every other image to determine all overlapping image pairs. A pair of images are deemed to
overlap if any pixel around the perimeter of one image falls within the boundary of the other image.

Syntax
 mOverlaps <images.tbl> <diffs.tbl>

Input Datatype Description
<images.tbl> char ASCII table created by mImgtbl
Output Description

<diffs.tbl> char Column delimited ASCII file that contains a summary of the
pairs of images that overlap.

 17

mDiff

Description
Analyze an image metadata table to determine a list of overlapping images. Each image is compared
with every other image to determine all overlapping image pairs. A pair of images are deemed to
overlap if any pixel around the perimeter of one image falls within the boundary of the other image.

Syntax
 mDiff <in1.fits> <in2.fits> <template.hdr> <out.fits>

Input Datatype Description
<in2.fits> Char FITS format file to be differenced (locations specified by the

<directory> output from mDiffExec)
<in2.fits> Char FITS format file to be differenced ((locations specified by

the <directory> output from mDiffExec)
<template.hdr> Char Column delimited ASCII file containing the lines to be used

to create the output FITS header.
Output Description

<out.fits> char FTS format difference file

mDiffExec

Description
A simple executive that runs mDiff on each image pair identified by mOverlaps

Syntax
mDiffExec <diffs.tbl> <template.hdr> <directory>

Input Datatype Description
<diffs.tbl> Char Table created by mOverlaps
<template.hdr> Char

Output Description

<template.hdr> Char Column delimited ASCII file containing the lines to be used
to create the output FITS header.

 18

mFitPlane

Description
Applies a least squares planar fit, excluding outlier pixels, to an image. Used on the difference images
generated by mDiff.

Usage: mFitplane <in.fits>

Input: <in.fits> are the FITS images to be fit.
Output: Parameters describing plane are written as “stdout,” where they are read by mDiffExec.

Syntax
mFitPlane <in.fits>

Input Datatype Description
<in.fits> char FITS image to which least squares fit is to be applied

Output Description

Parameters
describing plane

char Parameters are written as “stdout,” where they are read by
mDiffExec

mFitExec

Description
A simple executive that runs mFitplane on all of the overlapping image pairs identified by mOverlaps.
Creates a table of image-to-image difference parameters.

Syntax
mFitExec <diffs.tbl> <fits.tbl>

Input Datatype Description
<diffs.tbl> char Column delimited ASCII table created by mOverlaps

Output Description

<fits.tbl> char Column -delimited ASCII file that contains the background fits
for all images.

 19

mBgModel

Description
Modeling/fitting program which uses the image-to-image difference parameter table to iteratively
determine a set of corrections to apply to each image to achieve a “best” global fit. The algorithm
proceeds by determining the neighbors of each image, determining (in a least squares sense) the best
correction plane to match the image’s background with its neighbors, and iterating for a fixed number
of iterations to achieve convergence on a global solution.

Syntax
mBgModel <images.tbl> <fits.tbl> <corrections.tbl>

Input Datatype Description
<images.tbl> Char ASCII table created by mImgtbl
<fits.tbl> Char Column -delimited ASCII file that contains the

background fits for all images.

Output Description

<corrections.tbl>

Char Column delimited ASCII file that contains the corrections
to be applied to the original (projected) images.

mBackground

Description
Remove a background plane from a FITS image. The background correction applied to the image is
specified as Ax+By+C, where (x,y) is the pixel coordinate using the image center as the origin, and
(A,B,C) are the background plane parameters specified as linear coefficients.

Syntax
mBackground <in.fits> <A> <C> <xcenter> <ycenter> <out.fits>

Input Datatype Description
<in.fits> Char FITS image to be background corrected
<A> Real*4 Plane fit parameters, as stored in the

<corrections.tbl> table by mBgModel.
 Real*4 Plane fit parameters, as stored in the

<corrections.tbl> table by mBgModel
<C> Real*4 Plane fit parameters, as stored in the

<corrections.tbl> table by mBgModel
<xcenter> Real*4 Plane fit parameters, as stored in the

<corrections.tbl> table by mBgModel
<ycenter> Real*4 Plane fit parameters, as stored in the

<corrections.tbl> table by mBgModel
Output Description

<out.fits> char Output corrected FITS image

 20

mBgExec

Description
A simple executive that runs mBackground on all the images in the metadata table

Syntax
mBgExec <images.tbl> <corrections.tbl> <directory>

Input Datatype Description
<images.tbl> ASCII table created by mImgtbl
<corrections.tbl> Column delimited ASCII file that contains the corrections

to be applied to the original (projected) images.

Output Description

<directory> Location where the background corrected images will be
stored.

mBgModel

Description
Determines through iterative least squares fitting the parameters of the background model

Syntax
mBgModel images.tbl fits.tbl corrections.tbl [-iteration niter]

Input Datatype Description
<images.tbl> Char ASCII table created by mImgtbl
<corrections.tbl> Char Column delimited ASCII file that contains the corrections

to be applied to the original (projected) images.

[-iteration niter] Int The number of interations to run on the background
model (defaults to 25). There is no convergence
criterion on this algorithm yet but the algorithm is fast
and usually converges quickly.

Output Description

<fits.tbl> char This table contains the set of plane parameters fit to the
difference image generated from the diffs.tbl list.

 21

4.2. Definitions of Montage File Formats

4.2.1. ASCII Table formats & the images.tbl file

The modules described above read and generate column delimited flat ASCII table files,
whose format is obvious from this description. One of these files, images.tbl, is worth
special discussion because it contains metadata describing the geometry on the sky of a
set of image files (i.e. FITS header WCS keyword values). It is generated by mImgtbl
and use by several other programs.

Montage uses a simple table reading library which looks for data in an ASCII file having
a header with column names delimited by "|" characters and data records aligned in these
columns.

Image metadata tables must contain the geometric information for each FITS image plus
a counter and a pointer to the FITS file (In the sample file below, ns and nl are used in
place of NAXIS1 and NAXIS2 to save space):

The first line in the file is a parameter used by visualization software and can be treated
as a comment in this context.

Key to the required columns in the images.tbl file

Users may specify additional columns or keywords/comments above the header.
Dimensions 1 and 2 refer to axes 1 and 2 of a two-dimensional image.

Column Definition

FITS
standard?

cntr A unique counter (row number) N
ctype1,
ctype2

The coordinate system (the first four characters) and WCS
map projection (last three characters) for dimensions 1 and 2

Y

equinox Precessional year associated with the coordinate system Y
naxis1,
naxis2

The size of the image in pixels for dimensions 1 and 2

Y

\datatype = fitshdr
| cntr | ra | dec | ns | nl | ctype1 | ctype2 | crpix1 | crpix2 | crval1 | crval2 | cdelt1 | cdelt2 | crota2 | epoch
| fname |
| int | double | double | int | int | char | char | double | double | double | double | double | double | double |
double| char
 0 265.1229433 -29.5911740 512 1024 RA---SIN DEC--SIN 256.50 512.50 265.1227836 -29.5910351 -2.7778e-
04 2.7778e-04 0.0011373 2000.00 ./2mass-atlas-980702s-j0830021.fits
 1 265.1229367 -29.3217296 512 1024 RA---SIN DEC--SIN 256.50 512.50 265.1227774 -29.3215907 -2.7778e-
04 2.7778e-04 0.0011343 2000.00 ./2mass-atlas-980702s-j0830033.fits
 2 265.1229302 -29.0522851 512 1024 RA---SIN DEC--SIN 256.50 512.50 265.1227713 -29.0521462 -2.7778e-
04 2.7778e-04 0.0011313 2000.00 ./2mass-atlas-980702s-j0830044.fits

 22

Column Definition

FITS
standard?

crval1,
crval2

The coordinates of a reference location on the sky (often at
the center of the image) for dimensions 1 and 2

Y

crpix1,
crpix2

The pixel coordinates of the reference location (can be
fractional and can be off the image) for dimensions 1 and 2

Y

crpix2 The pixel scale (in degrees on the sky per pixel) at the
reference location for dimensions 1 and 2

Y

cdelt1,
cdelt2

The pixel scale (in degrees on the sky per pixel)
 cdelt2 = at the reference location

Y

crota2 The rotation angle from the "up" direction to the
 celestial pole

Y

fname The path to the original FITS file N

4.2.2. The Template.hdr file

Description:
A text file containing one FITS header card per line. It looks like a FITS header, though
with newlines after every card and with the trailing blanks on each line removed. Often
generated by hand but can be created by mMakeHdr analyzing an images.tbl file.

FITS headers consist of a variable of number of 80-character card images at the
beginning of the file concatenated together with no punctuation.

The template.hdr files used by Montage differs from this only in that the card images are
one to a line (left justified and newline delimited) and the lines can be any length less
than 80 characters. Other than that, the information content is identical; any valid FITS
header (with WCS information) is acceptable. The example below is for a Gnomonic-
projection image, 3000x3000 pixels (1x1 degree) centered at 265.91334 -29.3577
Equatorial J2000

 SIMPLE = T /
 BITPIX = -64 /
 NAXIS = 2 /
 NAXIS1 = 3000 /
 NAXIS2 = 3000 /
 CDELT1 = -3.333333E-4 /
 CDELT2 = 3.333333E-4 /
 CRPIX1 = 1500.5 /
 CRPIX2 = 1500.5 /
 CTYPE1 = 'RA---TAN' /
 CTYPE2 = 'DEC--TAN' /
 CRVAL1 = 265.91334 /
 CRVAL2 = -29.35778 /
 CROTA2 = 0. /

 23

4.3. Design of Montage Modules: Flow Charts

 mImgtbl mProjectExec

mImgtbl

Read command
line parameters.

Find an input image
in the specified
data directory.

Extract geometry
information from

image header.

Last
image?

Yes

No

End

mProjExec

Read command
line parameters.

Get input image
info.

call mProject

Last
image?

Yes

No

End

 24

mProject

Read command
line parameters.

Read output
header template.

Read input FITS
image.

Determine output
bounding box for
this input image.

Initialize buffers for
output pixels and

areas.

Project input pixels
to output space.

Read a row of
input data.

Pixel = First pixel
in current input row

Project four
"drizzled" corners
of current pixel.

Drizzle?

Yes

Project four corners
of current pixel.

No

Determine overlap
area for each output

pixel

Pixel = Next pixel
in current input row

Last pixel in
current row?

Last row of
input data?

Accumulate flux based
on overlap area for each

output pixel.

No

Yes

End

No

Yes

mProject

 25

mAdd

Read command
line parameters.

Read an input
image

Accumulate
pixel values.

Last
image?

Yes

No

End

Get output
mosaic specs.

Accumulate
pixel areas.

Normalize output
pixel values by area.

Create output
FITS header.

Write output
FITS image.

mAdd

 26

mOverlaps

Read command
line parameters.

Read an input
image, A.

Last image
A?

Yes

No

End

Read an input
image, B.

Left edge of
A intersects

B?

Right edge of
A intersects

B?

Top edge of
A intersects

B?

Bottom edge
of A intersects

B?

Record "A
intersects B" into

output table.

No

No

No

Last image
B?

No

Yes

No

Yes

Yes

Yes

Yes

Yes

mOverlaps

 27

mDiffExec

Read command
line parameters.

Call mDiff (A,B)

Last overlap
pair?

Yes

No

Read overlap
pair, A|B

End

 mDiff mDiffExec

mDiff

Read command
line parameters.

Set pixels outside
region of overlap to

0.

Normalize image data
based on total area

added to each pixel.

End

Calculate difference
image.

Determine region of
overlap between the

two input images.

Create and write
difference image as

FITS file.

 28

mFitExec

Read command
line parameters.

Get an overlap
differences file.

End

Call mFitPlane

Last
differences

file?

No

Yes

 mFitPlane mFitExec

mFitPlane

Read command
line parameters.

Least squares fit a
plane through image.

Read image

End

 29

mBackground

Read command
line parameters.

Remove background
= Ax+By+C from each

pixel (x,y).

Create and write
output FITS image.

End

Read input
image.

 mBgModel mBackground

mBgModel

Read command
line parameters.

Read difference
fit information.

Determine
neighbors for each

image.

N > 0
Yes

No

End

Read image
information.

Determine centers
for each image.

Set N to constant
number of iterations to

find least squares
solution

Calculate best set of
correction planes for
each image in least

squares sense.

Apply correction
planes to each

image.

Decrement N

 30

mBgExec

Read command
line parameters.

Get input image
info.

Get background
correction info.

Last
image?

Yes

No

End

Call
mBackground

mBgExec

 31

4.4. Error Handling Methodology

Montage employs the error handling methodology used by the Infrared Science Archive
(IRSA), which uses a ‘svc’ library to fire up external processes as services, to send
commands and receive structured responses, and to parse those responses to extract
keyword = value pairs or the value of a particular keyword [6]. The Appendix contains a
complete list of successful and error return codes module-by-module.

5. Montage Operating Under the NVO Architecture

Montage will run operationally on the Teragrid, a high performance computational grid
provided by the NSF Partnership for Advanced Computational Infrastructure. The
Teragrid provides aggregate computational power on the order of 10 Teraflops, aggregate
disk cache on the order of 800 TB and archival storage capacity of 6 Petabytes. The
details of how NVO compliant processes will be authenticated and fulfilled under the
Teragrid are under development, but will follow the grid paradigm, where data needed
for the request are obtained from the most convenient place, and computing is done on
any available platform where the request can be authenticated.

A request to Montage must be satisfied transparently: users will only be aware that they
are requesting an image mosaic according to their specification of position, size,
projection etc. They will not be aware of where the request is performed, or if the image
can be delivered or subset from a cached file. Figure 3 shows how a request to Montage
will be handled when the architecture is fully deployed. The request is passed from the
client to the Request Object Management Environment (ROME).

Broadly speaking, ROME is simply lightweight middleware, built with e-business
Enterprise Java Bean (EJB) technology, which handles requests, responds to messages
and manages pools of requests in a fault tolerant fashion [7]. A processing request to
Montage will be accepted by ROME, which will register the request in the database and
then send it for processing on the Teragrid. The job will be built on the Teragrid with
standard Grid technologies such as the Globus, an Open Source toolkit that handles the
construction and management of Grid processes, secur ity etc.

Part of the request may already be satisfied in cached image mosaics. The cache will
actually be part of a data management system that subsets files and constructs new
mosaics from subsets, as needed. Montage will therefore search through a catalog of
cached images and will satisfy such parts of the request as it can from the cached images.
If cached files cannot fill the request, processing on the Teragrid will fill it.

 32

MONTAGE
 Processing
Modules

Request
DBROME

GRID
Client

Application

Image Cache
and

Catalog

Requests

Custom
Clients

Browser
Forms

Clients

Image
Survey

Data

Image
Reprojection

Image
Reprojection

Image
Reprojection

Image
Reprojection

Image
Reprojection

Image
Reprojection

Image
Reprojection

Background
Modelling

Web Services

Survey
Metadata

Request
Management

ROME
MONTAGE
Interaction

Figure 3: Montage Integrated in the NVO

 33

An interpreter (part of grid resources such as Globus) accepts the XML request from
ROME, and translates it into a suitable computational graph (directed acyclical graph,
DAG) that specifies the computations that are needed and what data are needed. The
DAG represents the sequence of computations needed to construct the mosaic from the
input data. Montage will also perform a spatial search on the image collection metadata
to find those files needed to fill the request. The data themselves will reside on high-
quality disks, with high throughput I/O to the Teragrid processors that will be used by
NVO services.

The result of the processing will be conveyed to the user through ROME. The user will
receive a message that the data are available for pick-up until a deletion date. If the
request was time intensive, the user may have logged off the portal and decided to wait
for email notification. If the request could not be processed, ROME will be able to restart
the job on the user’s behalf. If only some intermediate products could be processed
before the server failed, ROME will rerun the job, but find the intermediate products and
use them as inputs. Many other partial processing examples can be handled easily within
ROME.

6. Description of Data Formats and Image Data Collections

6.1 Flexible Image Transport System and the World Coordinate System
Montage will support only input and output files containing two-dimensional images that
adhere to the definition of the Flexible Image Transport System (FITS) standard. FITS is
the format adopted by the astronomical community for data interchange and archival
storage [8]. All major astronomical image collections adhere to the FITS standard.

Briefly, FITS is a data format designed to provide a platform-independent means for
exchange of astronomical data. A FITS data file is composed of a sequence of Header
Data Units (HDUs). The header consists of “keyword=value” statements, which describe
the organization of the data in the HDU and the format of the contents. It may provide
additional information, for example, about instrument status or the history of the data.
The data follow, structured as the header specifies.

The relationship between the pixel coordinates in the image and sky coordinates on the
sky is defined by the World Coordinate System (WCS) [9]. Montage will support all the
map projections supported by WCS.

All information describing the format and data type of the image, and its geometry on the
sky (including WCS-supported map projection), are defined as header keywords in the
FITS standard specifications. Montage will use these standard keywords to discover
information on the format and geometry of an input image, and will use them to convey
the corresponding information about the output images.

 34

6.2 Image Data Collections

6.2.1 2MASS

2MASS is a ground-based survey that has imaged the entire sky at 1 arc second
resolution in three near-infrared wavelengths, 1.25 µm (J Band), 1.65 µm (H Band), and
2.17 µm (KS Band). Each positionally and photometrically calibrated 2MASS image is
roughly 2 MB in size and contains 512 x 1,024 pixels covering roughly 0.15 x 0.30
degrees. The full data set, referred to as the “Atlas” images, contains 4,733, 227 images,
with a total data volume of a little over 10 TB. A second image data set, called
“Quicklook” images, is a compressed version of the Atlas data set. The compression
factor is 20:1, but because the compression is lossy, the Quicklook images are suitable for
browsing only.

6.2.2 DPOSS

DPOSS has captured nearly the entire northern sky at 1 arc second resolution in three
wavelengths, 480 nm (J Band - blue), 650 nm (F Band - red), and 850 nm (N Band –
near-infrared). The survey data were captured on photographic plates by the 48” Oschin
Telescope at the Palomar Observatory in California [5]. The total size of the DPOSS data
accessible by yourSky is roughly 3 TB, stored in over 2,600 overlapping image plates.
The DPOSS plates are each about 1 GB in size and contain 23,552 x 23,552 pixels
covering a roughly 6.5 x 6.5 degree region of the sky.

6.2.3 SDSS

SDSS is using a dedicated 2.5 m telescope and a large format CCD camera to obtain
images of over 10,000 square degrees of high Galactic latitude sky in five broad spectral
bands (u', g', r', i' and z', centered at 3540, 4770, 6230, 7630, and 9130 Å, respectively).
The final image data collection is scheduled for public release in July 2006. An initial
public release in June 2001 covered about 460 square degrees of sky, and subsequent data
releases will occur every 18 months or so until the full image collection is released in
July 2006. This full collection will contain 1 billion Atlas images with a data volume of
1.5 TB.

6.3 Disposition of the Image Data Collections

6.3.1 2MASS

Currently, 47% of the 2MASS Image data collection has been released to the public,
roughly 1.8 million images with a data volume of 4 TB. The images are stored on the
High Performance Storage Server (HPSS) at the San Diego Supercomputer Center
(SDSC), and managed by SDSC’s Storage Resource Broker (SRB). The SRB is a
scalable client-server system that provides a uniform interface for connecting to
heterogeneous data resources, transparently manages replicas of data collections, and

 35

organizes data into “containers” for efficient access. The yourSky server uses a set of
client programs called SRB Tools to access selected 2MASS plates in batch mode from
the SRB, and the same client is adequate to support development of Montage.

As part of the NVO project, SDSC will replicate the 2MASS data on spinning disk there
and via SRB to a mirrored HPSS system at CACR. The schedule has to be determined,
but it is anticipated that the replication can be performed before the end of December
2002.

6.3.2 DPOSS

The DPOSS data are currently replicated on the HPSS system at CACR. SDSC has
committed to replicating the data at SDSC for processing under the NVO.

6.3.3 SDSS

The publicly released SDSS images are currently served from the SDSS archive at the
MultiMission Archive at Space Telescope (MAST), where they reside on spinning disk.
Our intention is to replicate the public data on spinning disk at SDSC. SDSS has
informally agreed to this plan, but a formal agreement has yet to be put in place. This
agreement will be negotiated by the NVO project.

7 Montage Design and Use Cases
This section demonstrates how the flexible and modular design of Montage supports the
Science Use Cases described in the Software Engineering Plan [2].

Use Case I - Science Analysis

The SIRTF First Look ancillary VLA image is a 2x2 degree radio image of a field that
will be observed by SIRTF. As a field uncluttered by galactic radiation in SIRTF’s
continuous viewing zone, it is a prime candidate for deep imaging of extragalactic
sources. The VLA image contains many radio “blobs,” many of which appear to be
interesting and perhaps bizarre objects. Interpretation of these objects requires multi-
wavelength measurements on a common projection and spatial scale. DPOSS, SDSS and
2MASS provide the broad wavelength base for analysis of these objects, yet analysis is
tedious and error prone because the images delivered by these projects have different
spatial resolutions, coordinates and projections. MONTAGE will eliminate these
difficulties by delivering mosaics from these data sets at a common resolution, projection
and in a common coordinate system.

This is a basic small region mosaic problem and can be run on a single workstation or
collection of workstations. Since the comparison will be with the VLA image, the
mosaic should be constructed using the same projection and scale. The processing steps
could in fact be run manually and would be as follows:

 36

• Extract FITS header from VLA image
• Identify 2MASS (or whatever) images for the region and collect the images if

running this in the standalone (i.e. non-GRID) mode. There are IRSA web
services to do this in the case of the 2MASS images and we expect similar
services to be available for the other datasets at some future date.

• Using the FITS header, reproject each of the input images to the new system
using mProject for each one individually or mProjExec to process them all in a
loop (based on a summary list prepared by mImgtbl). This step takes by far the
majority of the time.

• Since this is a small region, the user will probably opt to have a custom
background correction fit made. The first step in this is to determine exactly
which image overlap, using mOverlaps acting on a summary metadata table for
the reprojected images (again prepared by mImgtbl).

• mDiff is then used to actually generate the difference images for the overlapping
pairs identified in the last step. This is usually run in a loop by mDiffExec using
the table output by mOverlaps .

• mFitplane characterizes each difference image by a least-squares fit plane
(excluding flux outlier pixels). This is usually run in a loop using mFitExec,
which works off the table prepared by mOverlaps . The results go into a table
used in the next step.

• mBgModel iteratively fits the table generated by mFitplane /mFitExec and
determines the “best” background to remove from each of the original reprojected
images.

• The final step in the background correction process is to apply the corrections to
the images. This is done using mBackground on each image (usually by way of
mBgExec looping over the table generated by mBgModel).

• These corrected/reprojected images can now be coadded into the final mosaic
using mAdd (again using a summary metadata table for the corrected images
prepared by mImgtbl).

Use Case II – Observation Planning

The Multiband Imaging Photometer (MIPS) aboard the Space Infra Red Telescope
Facility (http://sirtf.caltech.edu/SSC/MIPS/mips_intro.html) has a scan length of 0.5°.
Observations with MIPS must avoid bright sources that will saturate the detector, and is
normally done by identifying infrared sources on 2MASS images. This is at present
difficult to do because the 2MASS images are 512 x 1024 arcsec on a side and the effects
of background variation from image to image complicate identification of sources in a
consistent way. Mosaics of 2MASS images that have a flat background (not necessarily
science grade) will make the task of identifying bright sources much easier to perform.

Here the need is for a global mosaic of the entire 2MASS dataset. While the scenario in
Use Case I still applies, the processing is operationally quite different. Here, the entire

 37

2MASS dataset should be reprojected into a regular pattern of large image outlines
covering the sky, on the order of 5-10 degrees in scale. The overlap analysis and
background fitting should be done once globally (or in a hierarchical local/global way)
and the correction parameters for all 2MASS images stored in a permanent public
database.

Since this would be done using GRID resources, the parallelization inherent in the
architecture can be exploited to the maximum. Rather than use mProjExec, all the re-
projection jobs can be added to a pool of tasks and performed by as many processors as
are available. The same is true of the other “list driven” processes above (mDiffExec,
mFitExec, mBgExec). The precise methodology to be used is TBD but will be built
using standard GRID programming toolkits (Globus, Condor, DAGMAN, etc). The Users
Guide delivered with the Montage software will give full details on how users can apply
these grid resources.

Requests for mosaics of a specific location could then be satisfied by simply background
subtracting (mBackground) and co-adding (mAdd) the already reprojected images
(which would be kept permanently). There would also probably be standard “products”;
images on the plate scale defined above covering the whole sky.

 If a custom projection was desired, the original images would probably be used (to avoid
losses due to repeated projection), re-projecting (mProject) them as desired but using the
“standard” background correction parameters from the database instead of the
background modeling described above.

Use Case III – Science Product Generation

The Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) will use the
Space Infra Red Telescope Facility (SIRTF) Infra Red Array Camera (IRAC)
(http://sirtf.caltech.edu/SSC/IRAC/SSC_B4.html) to survey approximately 220 square
degrees of the Galactic plane, covering a latitude range of ± 1°, and a longitude range of
abs(l)=10-65 °. GLIMPSE will be a confusion-limited survey of the Galactic Plane
(approximately 300 µJy) in the four IRAC bands. The survey will produce several
hundred GB of data in the form of catalogs and images, which will be delivered to the
SIRTF Science Center for dissemination to the entire astronomical community. The
GLIMPSE project requires a mosaic engine that is portable, uses only standard
astronomy packages, is highly scaleable and is easy to fine-tune. These are the goals of
Montage, which is therefore a serious candidate for GLIMPSE processing.

In this case, the input data set is not one of the data sets being used for Montage
development and testing and the processing will be run on a custom cluster of processing
engines (using home-grown pipeline executive code). The Montage modules are meant
to be flexible enough to accommodate any FITS image, so the same paradigm as
described in Use Case I should work. Here, however, the user would probably opt for
writing their own executive logic rather than using the mProjExec, mDiffExec,
mFitExec, and mBgExec modules (which are simple constructs in any case) and manage

 38

parallelization themselves (or using off-the-shelf tools such as Condor). Only the
executive logic needs customization: the processing modules will be used as delivered.
The Montage User’s Guide will give a complete description of how users can build their
own executives.

Use Case IV – Outreach

Large-scale image mosaics are useful in promoting general interest in infrared
astronomy through their use in local image galleries as well as the development of
posters, pamphlets, and other media for both the general public and educators. Mosaics
showing data at multiple wavelengths on a common projection, spatial scales etc exert a
powerful influence on the imagination, especially when made part of a larger permanent
display at a museum or planetarium. Access to Montage will allow production of large
scale images from multiple data sets that would otherwise be very labor-intensive to
accomplish.

Since such images will need to be on a common scale, much the same processing should
be used as in Use Case I. Not all of these images will be mosaics, however. Some will
be simple re-projections of existing images to put them all on the same scale. This can be
done by running them individually through mProject.

 39

References

[1] “Software Requirements Specification for Montage”. Version 1.0 (May 31, 2002);
http://montage.ipac.caltech.edu/projectdocs/Requirements.doc

[2] “Software Engineering Plan for Montage”. Version 1.0 (May 31, 2002);
http://montage.ipac.caltech.edu/projectdocs/SEP.doc

[3] J. O’Rourke, Computational Geometry in C (Cambridge University Press, 1998).
p220. (Chapter 7)

[4] Definition of Girard’s Theorem http://math.rice.edu/~pcmi/sphere.

[5] A.S. Fruchter, and R.N. Hook. “Linear Reconstruction of the Hubble Deep Field,”
http://www.stsci.edu/~fruchter/dither/drizzle.html

[6] Description of the IRSA “svc” library.
http://montage.ipac.caltech.edu/Documentation/svc.html

[7] “An Architecture for Access to a Compute Intensive Image Mosaic Service in the
NVO”. G. Bruce Berriman , David Curkendall, John Good , Joseph Jacob, Daniel S. Katz,
Mihseh Kong, Serge Monkewitz , Reagan Moore, Thomas Prince, Roy Williams. To
appear in “Astronomical Telescopes & Instrumentation: Virtual Observatories,” SPIE
4686-18.

[8] The Flexible Image Transport System (FITS), http://fits.gsfc.nasa.gov,
http://www.cv.nrao.edu/fits.

[9] E.W. Greisen and M. Calabretta, Representation of Celestial Coordinates In FITS,
http://www.atnf.csiro.au/people/mcalabre/WCS.htm.

 40

Acronyms

2MASS Two Micron All Sky Survey

ANSI American National Standards Institute
ASCII American Standard Code for Information Interchange

CACR Center for Advanced Computing Research
CCD Charge Coupled Device

DAG Directed Acyclical Graph
DBMS DataBase Management System
DPOSS Digital Palomar Observatory Sky Survey

EJB Enterpris e Java Beans

FITS Flexible Image Transport System

GB Giga Byte
GLIMPSE Galactic Legacy Infrared Midplane Survey Extraordinaire
GNU Gnu’s Not Unix

HEASARC High Energy Astrophysics Science ARChive
HDU Header Data Unit

IDE Interactive Development Environment
IPAC Infrared Processing and Analysis Center
IPG Information Power Grid
IRSA InfraRed Science Archive
IRAC InfraRed Array Camera

JPL Jet Propulsion Laboratory

MIPS Multiband Infrared Photometer for SIRTF

NVO National Virtual Observatory

OASIS On-Line Archive Science Information Services

SAO Smithsonian Astrophysical Observatory
SDSC San Diego Supercomputer Center
SDSS Sloan Digital Sky Survey
SIRTF Space Infrared Telescope Facility
SRB Storage Resource Broker
STScI Space Telescope Science Institute

TBD To Be Decided

VLA Very Large Array

WCS World Coordinate System

XML eXtensible Markup Language

 41

Appendix: Montage Return Codes

A1. Montage Successful Completion Codes

All Montage program return a success message upon normal completion. In addition to
the "OK" status, most also return useful information (in the case of mFitPlane data tha t
needs to written to a file as later background modelling input).

The return 'types' are indicated by “C printf() syntax” (e.g. %d for an integer).

Table A1: Montage Successful Completion Codes

Module Completion Code 1
mAdd.c [struct stat="OK", time=%d]
mBackground.c [struct stat="OK"]
mBgExec.c [struct stat="OK", count=%d, failed=%d]
mBgModel.c [struct stat="OK"]
mDiff.c [struct stat="OK"]
mDiffExec.c [struct stat="OK", count=%d, failed=%d]
mFitExec.c [struct stat="OK", count=%d, failed=%d]
mFitplane.c [struct stat="OK", a=%-g, b=%-g, c=%-g, xmin=%-g,

xmax=%-g, ymin=%-g, ymax=%-g, xcenter=%-g,
ycenter=%-g, rms=%-g]2

mImgtbl.c [struct stat="OK", count=%d]
mMakeHdr.c [struct stat="OK", count=%d]
mOverlaps.c [struct stat="OK", count=%d]
mProjExec.c [struct stat="OK", count=%d, failed=%d]

1 Key to fields in return messages:

time The execution time in seconds

count The number of images (or overlap area) processed or identified.

failed When processing image lists using Exec programs gives the number that

failed for whatever reason (the reason is given by the return message of
the exec-ed program).

noverlap For mProjExec; the number of input images that did not overlap the
region of interest.

 42

 2 The return parameters for mFitplane represent the plane fit to the data:

 plane value = a*(x-xcenter) + b*(y-ycenter) + c

where x and y are measured relative to xcenter, ycenter. The parameters
xmin, xmax, ymin, ymax give the range of pixels with data values since
images usually have some 'blank' (NaN) values. The data RMS after of
the fit is given by the parameter rms.

A2. Montage Error Return Codes

Whenever a processing error occurs, all Montage services return error codes to stdout
immediately before exiting . These errors trap conditions from incorrect input arguments
to usage reminders to diagnostics on input data formats to I/O errors due to file
permissions or disk space.

Table A2 gives a complete list of all error codes, module by module. Most messages are
self explanatory. As with all such structured messages, all the text is returned on one
line, though we have added new lines to improve readability where necessary.

All error returns contain a "msg" parameter; some include a FITs library
error code (integer); and messages referring to files, often include the file name.

Table A2: Complete listing of Montage error codes module-by-module

mAdd
[struct stat="ERROR", msg="Usage: mAdd images.tbl out.fits
 template.hdr [-d(ebug) level]"]
[struct stat="ERROR", msg="Need columns: cntr, fname in image list"]

[struct stat="ERROR", status=%d, msg="%s"] (FITS library status code
and message)
[struct stat="ERROR", msg="Template file not found"]
[struct stat="ERROR", msg="All pixels are blank."]

mBackground
[struct stat="ERROR", msg="Usage: mBackground in.fits out.fits A B C
 xcenter ycenter [-d(ebug) level]"]

[struct stat="ERROR", status=%d, msg="%s"] (FITS library status code
and message)

 43

mBgExec
[struct stat="ERROR", msg="Usage: mBgExec images.tbl corrections.tbl
 corrdir [-d]"]
[struct stat="ERROR", msg="Need columns: cntr,fname in image list"]

[struct stat="ERROR", msg="Need columns: id,a,b,c,xcenter,ycenter
 in corrections file"]

MBgModel
[struct stat="ERROR", msg="Usage: mBgModel images.tbl fits.tbl
 corrections.tbl [-iteration niter] [-d(ebug) level]"]

[struct stat="ERROR", msg="Failed to open output %s"] (output file
name)
[struct stat="ERROR", msg="Need columns: cntr nl ns crpix1 crpix2 in
image info file"]
[struct stat="ERROR", msg="Need columns: plus minus a b c xmin xmax
 ymin ymax xcenter ycenter"]
[struct stat="ERROR" msg="Singular Matrix-1"] (Messages from matrix
inversion routines)
[struct stat="ERROR" msg="Singular Matrix-2"]
[struct stat="ERROR" msg="Allocation failure in ivector()"]

mDiff
[struct stat="ERROR", msg="Usage: mDiff in1.fits in2.fits out.fits
 hdr.template [-d(ebug) level]"]

[struct stat="ERROR", status=%d, msg="%s"] (FITS library status code
and message)
[struct stat="ERROR", msg="Template file not found."]
[struct stat="ERROR", msg="All pixels are blank."]

mDiffExec
[struct stat="ERROR", msg="Usage: mDiffExec diffs.tbl template.hdr
[diffdir] [-d]"]

[struct stat="ERROR", msg="Need columns: cntr1 cntr2 plus minus diff"]

mFitExec
[struct stat="ERROR", msg="Usage: mFitExec diffs.tbl fits.tbl [diffdir]
[-d]"]

[struct stat="ERROR", msg="Can't open output file."]
struct stat="ERROR", msg="Need columns: cntr1 cntr2 plus minus diff"]

 44

mFitPlane
[struct stat="ERROR", msg="Usage: mFitPlane in.fits [-d(ebug) level]"]
[struct stat="ERROR", status=%d, msg="%s"] (FITS library status code
and message)
[struct stat="ERROR" msg="Singular Matrix-1"] (Messages from matrix
inversion routines)
[struct stat="ERROR" msg="Singular Matrix-2"]

mImbtbl
[struct stat="ERROR", msg="Usage: mImgtbl directory images.tbl [-
d(ebug)]"]
[struct stat="ERROR", msg="Can't open output table."]

[struct stat="ERROR", msg="Can't open copy table."]

[struct stat="ERROR", msg="Can't open tmp (in) table."]

[struct stat="ERROR", msg="Can't open tmp (out) table."]

[struct stat="ERROR", msg="Can't open final table."]

mOverlaps
[struct stat="ERROR", msg="Usage: mOverlaps images.tbl diffs.tbl [-
d(ebug) level]"]
[struct stat="ERROR", msg="Failed to open output %s"]
[struct stat="ERROR", msg="Need columns: cntr ctype1 ctype2 nl ns
crval1 crval2 crpix1 crpix2 cdelt1 cdelt2 crota2 fname (equinox
optional)"]

[struct stat="ERROR", msg="Bad WCS for image %d"] (record number in
images.tbl)

MProjExec
[struct stat="ERROR", msg="Usage: mProjExec images.tbl template.hdr
 projdir stats.tbl [-d]"]
[struct stat="ERROR", msg="Can't open output file."]
[struct stat="ERROR", msg="Need column fname in input"]

mProject
[struct stat="ERROR", msg="Usage: mProject in.fits out.fits
hdr.template [-drizzle factor][-d(ebug) level][-i(nrefpix) ypix xpix]
[-o(utrefpix) ypix xpix]"]
[struct stat="ERROR", msg="No overlap"]
[struct stat="ERROR", msg="Output wcsinit() failed."]
[struct stat="ERROR", msg="Input wcsinit() failed."]
[struct stat="ERROR", status=%d, msg="%s"] (FITS library status code
and message)
[struct stat="ERROR", msg="Template file not found."]
[struct stat="ERROR", msg="All pixels are blank."]

